Cargando…
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
PURPOSE: To test the feasibility of using deep learning for optical coherence tomography angiography (OCTA) detection of diabetic retinopathy. METHODS: A deep-learning convolutional neural network (CNN) architecture, VGG16, was employed for this study. A transfer learning process was implemented to...
Autores principales: | Le, David, Alam, Minhaj, Yao, Cham K., Lim, Jennifer I., Hsieh, Yi-Ting, Chan, Robison V. P., Toslak, Devrim, Yao, Xincheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424949/ https://www.ncbi.nlm.nih.gov/pubmed/32855839 http://dx.doi.org/10.1167/tvst.9.2.35 |
Ejemplares similares
-
Differential Artery–Vein Analysis Improves the Performance of OCTA Staging of Sickle Cell Retinopathy
por: Alam, Minhaj, et al.
Publicado: (2019) -
Combining ODR and Blood Vessel Tracking for Artery–Vein Classification and Analysis in Color Fundus Images
por: Alam, Minhaj, et al.
Publicado: (2018) -
Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies
por: Alam, Minhaj, et al.
Publicado: (2019) -
Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography
por: Wang, Benquan, et al.
Publicado: (2018) -
OCTA Multilayer and Multisector Peripapillary Microvascular Modeling for Diagnosing and Staging of Glaucoma
por: Andrade De Jesus, Danilo, et al.
Publicado: (2020)