Cargando…
Constrained sampling from deep generative image models reveals mechanisms of human target detection
The first steps of visual processing are often described as a bank of oriented filters followed by divisive normalization. This approach has been tremendously successful at predicting contrast thresholds in simple visual displays. However, it is unclear to what extent this kind of architecture also...
Autor principal: | Fruend, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424951/ https://www.ncbi.nlm.nih.gov/pubmed/32729908 http://dx.doi.org/10.1167/jov.20.7.32 |
Ejemplares similares
-
Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
por: Pombo, Guilherme, et al.
Publicado: (2023) -
Constrained and unconstrained deep image prior optimization models with automatic regularization
por: Cascarano, Pasquale, et al.
Publicado: (2022) -
Event Generation and Statistical Sampling with Deep Generative Models
por: Otten, Sydney
Publicado: (2019) -
Efficient parameter generation for constrained models using MCMC
por: Kravtsova, Natalia, et al.
Publicado: (2023) -
Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis
por: Xu, Yanzhe, et al.
Publicado: (2020)