Cargando…
Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network
PURPOSE: Adaptive optics scanning laser ophthalmoscope (AOSLO) capillary perfusion images can possess large variations in contrast, intensity, and background signal, thereby limiting the use of global or adaptive thresholding techniques for automatic segmentation. We sought to develop an automated a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424955/ https://www.ncbi.nlm.nih.gov/pubmed/32855847 http://dx.doi.org/10.1167/tvst.9.2.43 |
_version_ | 1783570408046329856 |
---|---|
author | Musial, Gwen Queener, Hope M. Adhikari, Suman Mirhajianmoghadam, Hanieh Schill, Alexander W. Patel, Nimesh B. Porter, Jason |
author_facet | Musial, Gwen Queener, Hope M. Adhikari, Suman Mirhajianmoghadam, Hanieh Schill, Alexander W. Patel, Nimesh B. Porter, Jason |
author_sort | Musial, Gwen |
collection | PubMed |
description | PURPOSE: Adaptive optics scanning laser ophthalmoscope (AOSLO) capillary perfusion images can possess large variations in contrast, intensity, and background signal, thereby limiting the use of global or adaptive thresholding techniques for automatic segmentation. We sought to develop an automated approach to segment perfused capillaries in AOSLO images. METHODS: 12,979 image patches were extracted from manually segmented AOSLO montages from 14 eyes and used to train a convolutional neural network (CNN) that classified pixels as capillaries, large vessels, background, or image canvas. 1764 patches were extracted from AOSLO montages of four separate subjects, and were segmented manually by two raters (ground truth) and automatically by the CNN, an Otsu's approach, and a Frangi approach. A modified Dice coefficient was created to account for slight spatial differences between the same manually and CNN-segmented capillaries. RESULTS: CNN capillary segmentation had an accuracy (0.94), a Dice coefficient (0.67), and a modified Dice coefficient (0.90) that were significantly higher than other automated approaches (P < 0.05). There were no significant differences in capillary density and mean segment length between manual ground-truth and CNN segmentations (P > 0.05). CONCLUSIONS: Close agreement between the CNN and manual segmentations enables robust and objective quantification of perfused capillary metrics. The developed CNN is time and computationally efficient, and distinguishes capillaries from areas containing diffuse background signal and larger underlying vessels. TRANSLATIONAL RELEVANCE: This automatic segmentation algorithm greatly increases the efficiency of quantifying AOSLO capillary perfusion images. |
format | Online Article Text |
id | pubmed-7424955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74249552020-08-26 Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network Musial, Gwen Queener, Hope M. Adhikari, Suman Mirhajianmoghadam, Hanieh Schill, Alexander W. Patel, Nimesh B. Porter, Jason Transl Vis Sci Technol Special Issue PURPOSE: Adaptive optics scanning laser ophthalmoscope (AOSLO) capillary perfusion images can possess large variations in contrast, intensity, and background signal, thereby limiting the use of global or adaptive thresholding techniques for automatic segmentation. We sought to develop an automated approach to segment perfused capillaries in AOSLO images. METHODS: 12,979 image patches were extracted from manually segmented AOSLO montages from 14 eyes and used to train a convolutional neural network (CNN) that classified pixels as capillaries, large vessels, background, or image canvas. 1764 patches were extracted from AOSLO montages of four separate subjects, and were segmented manually by two raters (ground truth) and automatically by the CNN, an Otsu's approach, and a Frangi approach. A modified Dice coefficient was created to account for slight spatial differences between the same manually and CNN-segmented capillaries. RESULTS: CNN capillary segmentation had an accuracy (0.94), a Dice coefficient (0.67), and a modified Dice coefficient (0.90) that were significantly higher than other automated approaches (P < 0.05). There were no significant differences in capillary density and mean segment length between manual ground-truth and CNN segmentations (P > 0.05). CONCLUSIONS: Close agreement between the CNN and manual segmentations enables robust and objective quantification of perfused capillary metrics. The developed CNN is time and computationally efficient, and distinguishes capillaries from areas containing diffuse background signal and larger underlying vessels. TRANSLATIONAL RELEVANCE: This automatic segmentation algorithm greatly increases the efficiency of quantifying AOSLO capillary perfusion images. The Association for Research in Vision and Ophthalmology 2020-07-23 /pmc/articles/PMC7424955/ /pubmed/32855847 http://dx.doi.org/10.1167/tvst.9.2.43 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Special Issue Musial, Gwen Queener, Hope M. Adhikari, Suman Mirhajianmoghadam, Hanieh Schill, Alexander W. Patel, Nimesh B. Porter, Jason Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title | Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title_full | Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title_fullStr | Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title_full_unstemmed | Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title_short | Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network |
title_sort | automatic segmentation of retinal capillaries in adaptive optics scanning laser ophthalmoscope perfusion images using a convolutional neural network |
topic | Special Issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424955/ https://www.ncbi.nlm.nih.gov/pubmed/32855847 http://dx.doi.org/10.1167/tvst.9.2.43 |
work_keys_str_mv | AT musialgwen automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT queenerhopem automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT adhikarisuman automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT mirhajianmoghadamhanieh automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT schillalexanderw automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT patelnimeshb automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork AT porterjason automaticsegmentationofretinalcapillariesinadaptiveopticsscanninglaserophthalmoscopeperfusionimagesusingaconvolutionalneuralnetwork |