Cargando…

Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study

BACKGROUND: Optimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hesami, Mohsen, Naderi, Roohangiz, Tohidfar, Masoud, Yoosefzadeh-Najafabadi, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424974/
https://www.ncbi.nlm.nih.gov/pubmed/32817755
http://dx.doi.org/10.1186/s13007-020-00655-9
Descripción
Sumario:BACKGROUND: Optimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy. RESULTS: The results showed that SVR (R(2) > 0.92) had better performance accuracy than MLP (R(2) > 0.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum’s somatic embryogenesis accurately. CONCLUSIONS: SVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies.