Cargando…

S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM

BACKGROUND: Surface layers (S-layers) are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost layer of many bacterial cell envelopes. Within the Lactobacillus genus, S-layer presence is frequently associated with probiotic-relevant properties such as improv...

Descripción completa

Detalles Bibliográficos
Autores principales: Klotz, Courtney, Goh, Yong Jun, O’Flaherty, Sarah, Barrangou, Rodolphe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425073/
https://www.ncbi.nlm.nih.gov/pubmed/32787778
http://dx.doi.org/10.1186/s12866-020-01908-2
Descripción
Sumario:BACKGROUND: Surface layers (S-layers) are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost layer of many bacterial cell envelopes. Within the Lactobacillus genus, S-layer presence is frequently associated with probiotic-relevant properties such as improved adherence to host epithelial cells and modulation of the immune response. However, recent studies have demonstrated that certain S-layer functions may be supplemented by a novel subset of proteins embedded within its lattice, termed S-layer associated proteins (SLAPs). In the following study, four Lactobacillus acidophilus NCFM SLAPs (LBA0046, LBA0864, LBA1426, and LBA1539) were selected for in silico and phenotypic assessment. RESULTS: Despite lacking any sequence similarity or catalytic domains that may indicate function, the genes encoding the four proteins of interest were shown to be unique to S-layer-forming, host-adapted lactobacilli species. Likewise, their corresponding deletion mutants exhibited broad, host-relevant phenotypes including decreased inflammatory profiles and reduced adherence to Caco-2 intestinal cells, extracellular matrices, and mucin in vitro. CONCLUSIONS: Overall, the data presented in this study collectively links several previously uncharacterized extracellular proteins to roles in the underlying host adaptive mechanisms of L. acidophilus.