Cargando…
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models
In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) al...
Autores principales: | Wu, Chong, Xu, Gongjun, Shen, Xiaotong, Pan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425805/ https://www.ncbi.nlm.nih.gov/pubmed/32802002 |
Ejemplares similares
-
An adaptive two-sample test for high-dimensional means
por: Xu, Gongjun, et al.
Publicado: (2016) -
Generalization Bounds Derived IPM-Based Regularization for Domain Adaptation
por: Meng, Juan, et al.
Publicado: (2016) -
Adaptive group bridge estimation for high-dimensional partially linear models
por: Wang, Xiuli, et al.
Publicado: (2017) -
Optimal errors and phase transitions in high-dimensional generalized linear models
por: Barbier, Jean, et al.
Publicado: (2019) -
Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models
por: Jiang, Jinzhu, et al.
Publicado: (2023)