Cargando…
Evolution and impact of bias in human and machine learning algorithm interaction
Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born fro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425868/ https://www.ncbi.nlm.nih.gov/pubmed/32790666 http://dx.doi.org/10.1371/journal.pone.0235502 |
_version_ | 1783570577572757504 |
---|---|
author | Sun, Wenlong Nasraoui, Olfa Shafto, Patrick |
author_facet | Sun, Wenlong Nasraoui, Olfa Shafto, Patrick |
author_sort | Sun, Wenlong |
collection | PubMed |
description | Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human’s reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms’ performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set. |
format | Online Article Text |
id | pubmed-7425868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74258682020-08-20 Evolution and impact of bias in human and machine learning algorithm interaction Sun, Wenlong Nasraoui, Olfa Shafto, Patrick PLoS One Research Article Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human’s reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms’ performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set. Public Library of Science 2020-08-13 /pmc/articles/PMC7425868/ /pubmed/32790666 http://dx.doi.org/10.1371/journal.pone.0235502 Text en © 2020 Sun et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sun, Wenlong Nasraoui, Olfa Shafto, Patrick Evolution and impact of bias in human and machine learning algorithm interaction |
title | Evolution and impact of bias in human and machine learning algorithm interaction |
title_full | Evolution and impact of bias in human and machine learning algorithm interaction |
title_fullStr | Evolution and impact of bias in human and machine learning algorithm interaction |
title_full_unstemmed | Evolution and impact of bias in human and machine learning algorithm interaction |
title_short | Evolution and impact of bias in human and machine learning algorithm interaction |
title_sort | evolution and impact of bias in human and machine learning algorithm interaction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425868/ https://www.ncbi.nlm.nih.gov/pubmed/32790666 http://dx.doi.org/10.1371/journal.pone.0235502 |
work_keys_str_mv | AT sunwenlong evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction AT nasraouiolfa evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction AT shaftopatrick evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction |