Cargando…
Evolution and impact of bias in human and machine learning algorithm interaction
Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born fro...
Autores principales: | Sun, Wenlong, Nasraoui, Olfa, Shafto, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425868/ https://www.ncbi.nlm.nih.gov/pubmed/32790666 http://dx.doi.org/10.1371/journal.pone.0235502 |
Ejemplares similares
-
Building a glaucoma interaction network using a text mining approach
por: Soliman, Maha, et al.
Publicado: (2016) -
Reducing the Biases in Machine Learning Algorithms for Higgs Physics
por: Katsarov, Stefan
Publicado: (2023) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Inconvenient Samples: Modeling Biases Related to Parental Consent by Coupling Observational and Experimental Results
por: Yu, Yue, et al.
Publicado: (2020) -
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
por: Yang, Jenny, et al.
Publicado: (2023)