Cargando…
Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case
For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process...
Autores principales: | Erdős, László, Krüger, Torben, Schröder, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426322/ https://www.ncbi.nlm.nih.gov/pubmed/32831359 http://dx.doi.org/10.1007/s00220-019-03657-4 |
Ejemplares similares
-
Edge universality for non-Hermitian random matrices
por: Cipolloni, Giorgio, et al.
Publicado: (2020) -
Local Spectral Statistics of Gaussian Matrices with Correlated Entries
por: Ajanki, Oskari H., et al.
Publicado: (2016) -
On the Spectral Form Factor for Random Matrices
por: Cipolloni, Giorgio, et al.
Publicado: (2023) -
Hermitian and Unitary Almost-Companion Matrices of Polynomials on Demand
por: Markovich, Liubov A., et al.
Publicado: (2023) -
Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
por: Hong, Yan, et al.
Publicado: (2018)