Cargando…

Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers

This tutorial presents practical guidance on transforming various types of information published in journals, or available online from government and other sources, into transition probabilities for use in state-transition models, including cost-effectiveness models. Much, but not all, of the guidan...

Descripción completa

Detalles Bibliográficos
Autores principales: Gidwani, Risha, Russell, Louise B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426391/
https://www.ncbi.nlm.nih.gov/pubmed/32797380
http://dx.doi.org/10.1007/s40273-020-00937-z
Descripción
Sumario:This tutorial presents practical guidance on transforming various types of information published in journals, or available online from government and other sources, into transition probabilities for use in state-transition models, including cost-effectiveness models. Much, but not all, of the guidance has been previously published in peer-reviewed journals. Our purpose is to collect it in one location to serve as a stand-alone resource for decision modelers who draw most or all of their information from the published literature. Our focus is on the technical aspects of manipulating data to derive transition probabilities. We explain how to derive model transition probabilities from the following types of statistics: relative risks, odds, odds ratios, and rates. We then review the well-known approach for converting probabilities to match the model’s cycle length when there are two health-state transitions and how to handle the case of three or more health-state transitions, for which the two-state approach is not appropriate. Other topics discussed include transition probabilities for population subgroups, issues to keep in mind when using data from different sources in the derivation process, and sensitivity analyses, including the use of sensitivity analysis to allocate analyst effort in refining transition probabilities and ways to handle sources of uncertainty that are not routinely formalized in models. The paper concludes with recommendations to help modelers make the best use of the published literature.