Cargando…
Computational Prediction of Drug Responses in Cancer Cell Lines From Cancer Omics and Detection of Drug Effectiveness Related Methylation Sites
Accurately predicting the response of a cancer patient to a therapeutic agent remains an important challenge in precision medicine. With the rise of data science, researchers have applied computational models to study the drug inhibition effects on cancers based on cancer genomics and transcriptomic...
Autores principales: | Yuan, Rui, Chen, Shilong, Wang, Yongcui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426400/ https://www.ncbi.nlm.nih.gov/pubmed/32849855 http://dx.doi.org/10.3389/fgene.2020.00917 |
Ejemplares similares
-
Computational Probing the Methylation Sites Related to EGFR Inhibitor-Responsive Genes
por: Yuan, Rui, et al.
Publicado: (2021) -
Omics and Computational Modeling Approaches for the Effective Treatment of Drug-Resistant Cancer Cells
por: Jung, Hae Deok, et al.
Publicado: (2021) -
Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties
por: Wang, Yongcui, et al.
Publicado: (2016) -
Pan-Cancer DNA Methylation Analysis and Tumor Origin Identification of Carcinoma of Unknown Primary Site Based on Multi-Omics
por: Liu, Pengfei
Publicado: (2022) -
Multi-Omic Data Interpretation to Repurpose Subtype Specific Drug Candidates for Breast Cancer
por: Turanli, Beste, et al.
Publicado: (2019)