Cargando…
The Importance of Anti-correlations in Graph Theory Based Classification of Autism Spectrum Disorder
With the release of the multi-site Autism Brain Imaging Data Exchange, many researchers have applied machine learning methods to distinguish between healthy subjects and autistic individuals by using features extracted from resting state functional MRI data. An important part of applying machine lea...
Autores principales: | Kazeminejad, Amirali, Sotero, Roberto C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426475/ https://www.ncbi.nlm.nih.gov/pubmed/32848533 http://dx.doi.org/10.3389/fnins.2020.00676 |
Ejemplares similares
Cargando…
RELN Mutations in Autism Spectrum Disorder
por: Lammert, Dawn B., et al.
Publicado: (2016)
por: Lammert, Dawn B., et al.
Publicado: (2016)
Ejemplares similares
-
Topological Properties of Resting-State fMRI Functional Networks Improve Machine Learning-Based Autism Classification
por: Kazeminejad, Amirali, et al.
Publicado: (2019) -
Identification of Autism Spectrum Disorder With Functional Graph Discriminative Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Epigenetics and Autism Spectrum Disorder: Is There a Correlation?
por: Eshraghi, Adrien A., et al.
Publicado: (2018) -
Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis
por: Zhao, Feng, et al.
Publicado: (2022) -
Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network
por: Zhang, Haoran, et al.
Publicado: (2023)