Cargando…
From a deep learning model back to the brain—Identifying regional predictors and their relation to aging
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond servi...
Autores principales: | Levakov, Gidon, Rosenthal, Gideon, Shelef, Ilan, Raviv, Tammy Riklin, Avidan, Galia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426775/ https://www.ncbi.nlm.nih.gov/pubmed/32320123 http://dx.doi.org/10.1002/hbm.25011 |
Ejemplares similares
-
Reliability and validity of brain‐gastric phase synchronization
por: Levakov, Gidon, et al.
Publicado: (2023) -
Mapping individual differences across brain network structure to function and behavior with connectome embedding
por: Levakov, Gidon, et al.
Publicado: (2021) -
The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity
por: Levakov, Gidon, et al.
Publicado: (2023) -
Functional connectivity of the human face network exhibits right hemispheric lateralization from infancy to adulthood
por: Lesinger, Keren, et al.
Publicado: (2023) -
The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS)
por: Kaplan, Alon, et al.
Publicado: (2022)