Cargando…
Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation
Anodic oxygen evolution reaction (OER) is recognized as kinetic bottleneck in water electrolysis. Transition metal sites with high valence states can accelerate the reaction kinetics to offer highly intrinsic activity, but suffer from thermodynamic formation barrier. Here, we show subtle engineering...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426847/ https://www.ncbi.nlm.nih.gov/pubmed/32792524 http://dx.doi.org/10.1038/s41467-020-17934-7 |
Sumario: | Anodic oxygen evolution reaction (OER) is recognized as kinetic bottleneck in water electrolysis. Transition metal sites with high valence states can accelerate the reaction kinetics to offer highly intrinsic activity, but suffer from thermodynamic formation barrier. Here, we show subtle engineering of highly oxidized Ni(4+) species in surface reconstructed (oxy)hydroxides on multicomponent FeCoCrNi alloy film through interatomically electronic interplay. Our spectroscopic investigations with theoretical studies uncover that Fe component enables the formation of Ni(4+) species, which is energetically favored by the multistep evolution of Ni(2+)→Ni(3+)→Ni(4+). The dynamically constructed Ni(4+) species drives holes into oxygen ligands to facilitate intramolecular oxygen coupling, triggering lattice oxygen activation to form Fe-Ni dual-sites as ultimate catalytic center with highly intrinsic activity. As a result, the surface reconstructed FeCoCrNi OER catalyst delivers outstanding mass activity and turnover frequency of 3601 A g(metal)(−1) and 0.483 s(−1) at an overpotential of 300 mV in alkaline electrolyte, respectively. |
---|