Cargando…
Accelerated spin dynamics using deep learning corrections
Theoretical models capture very precisely the behaviour of magnetic materials at the microscopic level. This makes computer simulations of magnetic materials, such as spin dynamics simulations, accurately mimic experimental results. New approaches to efficient spin dynamics simulations are limited b...
Autores principales: | Park, Sojeong, Kwak, Wooseop, Lee, Hwee Kuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426868/ https://www.ncbi.nlm.nih.gov/pubmed/32792674 http://dx.doi.org/10.1038/s41598-020-70558-1 |
Ejemplares similares
-
Machine-Learning Studies on Spin Models
por: Shiina, Kenta, et al.
Publicado: (2020) -
Estimating the effective fields of spin configurations using a deep learning technique
por: Lee, D. B., et al.
Publicado: (2021) -
Searching for the ground state of complex spin-ice systems using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2022) -
Inverse renormalization group based on image super-resolution using deep convolutional networks
por: Shiina, Kenta, et al.
Publicado: (2021) -
Data orchestration in deep learning accelerators
por: Krishna, Tushar, et al.
Publicado: (2020)