Cargando…
Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations
Single-atom metal-nitrogen-carbon (M-N-C) catalysts have sparked intensive interests, however, the development of an atomically dispersed metal-phosphorus-carbon (M-P-C) catalyst has not been achieved, although molecular metal-phosphine complexes have found tremendous applications in homogeneous cat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426939/ https://www.ncbi.nlm.nih.gov/pubmed/32792657 http://dx.doi.org/10.1038/s41467-020-17903-0 |
Sumario: | Single-atom metal-nitrogen-carbon (M-N-C) catalysts have sparked intensive interests, however, the development of an atomically dispersed metal-phosphorus-carbon (M-P-C) catalyst has not been achieved, although molecular metal-phosphine complexes have found tremendous applications in homogeneous catalysis. Herein, we successfully construct graphitic phosphorus species coordinated single-atom Fe on P-doped carbon, which display outstanding catalytic performance and reaction generality in the heterogeneous hydrogenation of N-heterocycles, functionalized nitroarenes, and reductive amination reactions, while the corresponding atomically dispersed Fe atoms embedded on N-doped carbon are almost inactive under the same reaction conditions. Furthermore, we find that the catalytic activity of graphitic phosphorus coordinated single-atom Fe sharply decreased when Fe atoms were transformed to Fe clusters/nanoparticles by post-impregnation Fe species. This work can be of fundamental interest for the design of single-atom catalysts by utilizing P atoms as coordination sites as well as of practical use for the application of M-P-C catalysts in heterogeneous catalysis. |
---|