Cargando…
Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods
OBJECTIVES: The aim was to identify the most important features of structural knee osteoarthritis (OA) progressors and classification using machine learning methods. METHODS: Participants, features and outcomes were from the Osteoarthritis Initiative. Features were from baseline (1107), including ar...
Autores principales: | Jamshidi, Afshin, Leclercq, Mickael, Labbe, Aurelie, Pelletier, Jean-Pierre, Abram, François, Droit, Arnaud, Martel-Pelletier, Johanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427139/ https://www.ncbi.nlm.nih.gov/pubmed/32849918 http://dx.doi.org/10.1177/1759720X20933468 |
Ejemplares similares
-
A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening
por: Bonakdari, Hossein, et al.
Publicado: (2021) -
Single nucleotide polymorphism genes and mitochondrial DNA haplogroups as biomarkers for early prediction of knee osteoarthritis structural progressors: use of supervised machine learning classifiers
por: Bonakdari, Hossein, et al.
Publicado: (2022) -
A Machine Learning Model to Predict Knee Osteoarthritis Cartilage Volume Changes over Time Using Baseline Bone Curvature
por: Bonakdari, Hossein, et al.
Publicado: (2022) -
Serum adipokines/related inflammatory factors and ratios as predictors of infrapatellar fat pad volume in osteoarthritis: Applying comprehensive machine learning approaches
por: Bonakdari, Hossein, et al.
Publicado: (2020) -
Exploring determinants predicting response to intra-articular hyaluronic acid treatment in symptomatic knee osteoarthritis: 9-year follow-up data from the Osteoarthritis Initiative
por: Pelletier, Jean-Pierre, et al.
Publicado: (2018)