Cargando…
Sparse Logistic Regression With L(1/2) Penalty for Emotion Recognition in Electroencephalography Classification
Emotion recognition based on electroencephalography (EEG) signals is a current focus in brain-computer interface research. However, the classification of EEG is difficult owing to large amounts of data and high levels of noise. Therefore, it is important to determine how to effectively extract featu...
Autores principales: | Chen, Dong-Wei, Miao, Rui, Deng, Zhao-Yong, Lu, Yue-Yue, Liang, Yong, Huang, Lan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427509/ https://www.ncbi.nlm.nih.gov/pubmed/32848688 http://dx.doi.org/10.3389/fninf.2020.00029 |
Ejemplares similares
-
Sparse Granger Causality Analysis Model Based on Sensors Correlation for Emotion Recognition Classification in Electroencephalography
por: Chen, Dongwei, et al.
Publicado: (2021) -
Sparse logistic regression with a L(1/2) penalty for gene selection in cancer classification
por: Liang, Yong, et al.
Publicado: (2013) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L(1/2 +2) Regularization
por: Huang, Hai-Hui, et al.
Publicado: (2016)