Cargando…
Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach
Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. These models usually comprise unknown parameters, which have to be inferred from experimental data. For quantitative experimental data, there are several methods and software tool...
Autores principales: | Schmiester, Leonard, Weindl, Daniel, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427713/ https://www.ncbi.nlm.nih.gov/pubmed/32696085 http://dx.doi.org/10.1007/s00285-020-01522-w |
Ejemplares similares
-
Efficient parameterization of large-scale dynamic models based on relative measurements
por: Schmiester, Leonard, et al.
Publicado: (2019) -
Efficient gradient-based parameter estimation for dynamic models using qualitative data
por: Schmiester, Leonard, et al.
Publicado: (2021) -
Mini-batch optimization enables training of ODE models on large-scale datasets
por: Stapor, Paul, et al.
Publicado: (2022) -
FitMultiCell: simulating and parameterizing computational models of multi-scale and multi-cellular processes
por: Alamoudi, Emad, et al.
Publicado: (2023) -
Mechanistic Parameterization of the Kinomic Signal in Peptide Arrays
por: Dussaq, Alex, et al.
Publicado: (2016)