Cargando…
Antibacterial activity of Cu(II) and Co(II) porphyrins: role of ligand modification
In this study, we report antibacterial activity of metalloporphyrins; 5, 10, 15, 20-tetrakis (para-X phenyl)porphyrinato M (II) [where X = H, NH(2) and COOMe for M = Cu and X = COOH and OMe for M = Co]. The activity study of the as-synthesized metalloporphyrins toward two Gram-positive (S. aureus a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427740/ https://www.ncbi.nlm.nih.gov/pubmed/32818202 http://dx.doi.org/10.1186/s13065-020-00701-6 |
Sumario: | In this study, we report antibacterial activity of metalloporphyrins; 5, 10, 15, 20-tetrakis (para-X phenyl)porphyrinato M (II) [where X = H, NH(2) and COOMe for M = Cu and X = COOH and OMe for M = Co]. The activity study of the as-synthesized metalloporphyrins toward two Gram-positive (S. aureus and S. pyogenes) and two Gram-negative (E. coli and K. pneumoniae) bacteria showed a promising inhibitory activity. Among the complexes under study, the highest antibacterial activity is observed for 5, 10, 15, 20-tetrakis (p-carboxyphenyl)porphyrinato cobalt (II), with inhibition zone of 16.5 mm against Staphylococcus aureus (S. aureus). This activity could be attributed to the high binding ability of COOH group to cellular components, membranes, proteins, and DNA as well as the lipophilicity of the complex. Moreover, consistent with literature report, the study revealed that metalloporphyrins with electron withdrawing group at para-positions have better antibacterial activity than metalloporphyrin which possess electron donating group at para position. |
---|