Cargando…
Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation
BACKGROUND: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428053/ https://www.ncbi.nlm.nih.gov/pubmed/32797086 http://dx.doi.org/10.1371/journal.pmed.1003281 |
_version_ | 1783571000761253888 |
---|---|
author | Grosset, Andrée-Anne Dallaire, Frédérick Nguyen, Tien Birlea, Mirela Wong, Jahg Daoust, François Roy, Noémi Kougioumoutzakis, André Azzi, Feryel Aubertin, Kelly Kadoury, Samuel Latour, Mathieu Albadine, Roula Prendeville, Susan Boutros, Paul Fraser, Michael Bristow, Rob G. van der Kwast, Theodorus Orain, Michèle Brisson, Hervé Benzerdjeb, Nazim Hovington, Hélène Bergeron, Alain Fradet, Yves Têtu, Bernard Saad, Fred Leblond, Frédéric Trudel, Dominique |
author_facet | Grosset, Andrée-Anne Dallaire, Frédérick Nguyen, Tien Birlea, Mirela Wong, Jahg Daoust, François Roy, Noémi Kougioumoutzakis, André Azzi, Feryel Aubertin, Kelly Kadoury, Samuel Latour, Mathieu Albadine, Roula Prendeville, Susan Boutros, Paul Fraser, Michael Bristow, Rob G. van der Kwast, Theodorus Orain, Michèle Brisson, Hervé Benzerdjeb, Nazim Hovington, Hélène Bergeron, Alain Fradet, Yves Têtu, Bernard Saad, Fred Leblond, Frédéric Trudel, Dominique |
author_sort | Grosset, Andrée-Anne |
collection | PubMed |
description | BACKGROUND: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS: We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l’Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec–Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%–69%), and pT3a (22%–49%) was more frequent than pT3b (9%–12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS: In this study, we developed classification models for the analysis of RμS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P. |
format | Online Article Text |
id | pubmed-7428053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74280532020-08-20 Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation Grosset, Andrée-Anne Dallaire, Frédérick Nguyen, Tien Birlea, Mirela Wong, Jahg Daoust, François Roy, Noémi Kougioumoutzakis, André Azzi, Feryel Aubertin, Kelly Kadoury, Samuel Latour, Mathieu Albadine, Roula Prendeville, Susan Boutros, Paul Fraser, Michael Bristow, Rob G. van der Kwast, Theodorus Orain, Michèle Brisson, Hervé Benzerdjeb, Nazim Hovington, Hélène Bergeron, Alain Fradet, Yves Têtu, Bernard Saad, Fred Leblond, Frédéric Trudel, Dominique PLoS Med Research Article BACKGROUND: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS: We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l’Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec–Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%–69%), and pT3a (22%–49%) was more frequent than pT3b (9%–12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS: In this study, we developed classification models for the analysis of RμS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P. Public Library of Science 2020-08-14 /pmc/articles/PMC7428053/ /pubmed/32797086 http://dx.doi.org/10.1371/journal.pmed.1003281 Text en © 2020 Grosset et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Grosset, Andrée-Anne Dallaire, Frédérick Nguyen, Tien Birlea, Mirela Wong, Jahg Daoust, François Roy, Noémi Kougioumoutzakis, André Azzi, Feryel Aubertin, Kelly Kadoury, Samuel Latour, Mathieu Albadine, Roula Prendeville, Susan Boutros, Paul Fraser, Michael Bristow, Rob G. van der Kwast, Theodorus Orain, Michèle Brisson, Hervé Benzerdjeb, Nazim Hovington, Hélène Bergeron, Alain Fradet, Yves Têtu, Bernard Saad, Fred Leblond, Frédéric Trudel, Dominique Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title | Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title_full | Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title_fullStr | Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title_full_unstemmed | Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title_short | Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case–control study with multicohort validation |
title_sort | identification of intraductal carcinoma of the prostate on tissue specimens using raman micro-spectroscopy: a diagnostic accuracy case–control study with multicohort validation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428053/ https://www.ncbi.nlm.nih.gov/pubmed/32797086 http://dx.doi.org/10.1371/journal.pmed.1003281 |
work_keys_str_mv | AT grossetandreeanne identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT dallairefrederick identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT nguyentien identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT birleamirela identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT wongjahg identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT daoustfrancois identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT roynoemi identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT kougioumoutzakisandre identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT azziferyel identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT aubertinkelly identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT kadourysamuel identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT latourmathieu identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT albadineroula identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT prendevillesusan identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT boutrospaul identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT frasermichael identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT bristowrobg identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT vanderkwasttheodorus identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT orainmichele identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT brissonherve identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT benzerdjebnazim identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT hovingtonhelene identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT bergeronalain identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT fradetyves identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT tetubernard identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT saadfred identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT leblondfrederic identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation AT trudeldominique identificationofintraductalcarcinomaoftheprostateontissuespecimensusingramanmicrospectroscopyadiagnosticaccuracycasecontrolstudywithmulticohortvalidation |