Cargando…

Muscarinic receptors promote castration resistant growth of prostate cancer through a FAK-YAP signaling axis

Prostate cancer innervation contributes to the progression of prostate cancer (PCa). However, the precise impact of innervation on PCa cells is still poorly understood. By focusing on muscarinic receptors, which are activated by the nerve-derived neurotransmitter acetylcholine, we show that muscarin...

Descripción completa

Detalles Bibliográficos
Autores principales: Goto, Yusuke, Ando, Toshinori, Izumi, Hiroki, Feng, Xiaodong, Arang, Nadia, Gilardi, Mara, Wang, Zhiyong, Ando, Kazuyo, Gutkind, J. Silvio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428076/
https://www.ncbi.nlm.nih.gov/pubmed/32205868
http://dx.doi.org/10.1038/s41388-020-1272-x
Descripción
Sumario:Prostate cancer innervation contributes to the progression of prostate cancer (PCa). However, the precise impact of innervation on PCa cells is still poorly understood. By focusing on muscarinic receptors, which are activated by the nerve-derived neurotransmitter acetylcholine, we show that muscarinic receptors 1 and 3 (m1 and m3) are highly expressed in PCa clinical specimens compared to all other cancer types, and that amplification or gain of their corresponding encoding genes (CHRM1 and CHRM3, respectively) represent a worse prognostic factor for PCa progression free survival. Moreover, m1 and m3 gene gain or amplification are frequent in castration-resistant PCa (CRPC) compared with hormone-sensitive PCa (HSPC) specimens. This was reflected in HSPC-derived cells, which show aberrantly high expression of m1 and m3 under androgen deprivation mimicking castration and androgen receptor inhibition. We also show that pharmacological activation of m1 and m3 signaling is sufficient to induce the castration-resistant growth of PCa cells. Mechanistically, we found that m1 and m3 stimulation induces YAP activation through FAK, whose encoding gene, PTK2 is frequently amplified in CRPC cases. Pharmacological inhibition of FAK and knockdown of YAP abolished m1 and m3-induced castration-resistant growth of PCa cells. Our findings provide novel therapeutic opportunities for muscarinic-signal-driven CRPC progression by targeting the FAK-YAP signaling axis.