Cargando…

Subconcussive head impact exposure between drill intensities in U.S. high school football

USA Football established five levels-of-contact to guide the intensity of high school football practices. The objective of this study was to examine head impact frequency and magnitude by levels-of-contact to determine which drills had the greatest head impact exposure. Our primary hypothesis was th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kercher, Kyle, Steinfeldt, Jesse A., Macy, Jonathan T., Ejima, Keisuke, Kawata, Keisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428124/
https://www.ncbi.nlm.nih.gov/pubmed/32797073
http://dx.doi.org/10.1371/journal.pone.0237800
Descripción
Sumario:USA Football established five levels-of-contact to guide the intensity of high school football practices. The objective of this study was to examine head impact frequency and magnitude by levels-of-contact to determine which drills had the greatest head impact exposure. Our primary hypothesis was that there would be an incremental increase in season-long head impact exposure between levels-of-contact: air<bags<control<thud<live. This observational study included 24 high-school football players during all 46 practices, 1 scrimmage, 9 junior varsity and 10 varsity games in the 2019 season. Players wore a sensor-installed mouthguard that monitored head impact frequency, peak linear acceleration (PLA), and rotational acceleration (PRA). Practice/game drills were filmed and categorized into five levels-of-contact (air, bags, control, thud, live), and head impact data were assigned into one of five levels-of-contact. Player position was categorized into lineman, hybrid, and skill. A total of 6016 head impacts were recorded during 5 levels-of-contact throughout the season. In the overall sample, total number of impacts, sum of PLA, and PRA per player increased in a near incremental manner (air<bags<control = thud<live), where live drills had significantly higher cumulative frequency (113.7±17.8 hits/player) and magnitude [2,657.6±432.0 g (PLA), and 233.9 ± 40.1 krad/s(2) (PRA)] than any other levels-of-contact, whereas air drills showed the lowest cumulative frequency (7.7±1.9 hits/player) and magnitude [176.9±42.5 g (PLA), PRA 16.7±4.2 krad/s(2) (PRA)]. There was no significant position group difference in cumulative head impact frequency and magnitude in a season. Although there was no difference in average head impact magnitude across five levels-of-contact and by position group PLA (18.2–23.2g) and PRA (1.6–2.3krad/s(2)) per impact], high magnitude (60-100g and >100g) head impacts were more frequently observed during live and thud drills. Level-of-contact influences cumulative head impact frequency and magnitude in high-school football, with players incurring frequent, high magnitude head impacts during live, thud, and control. It is important to consider level-of-contact to refine clinical exposure guidelines to minimize head impact burden in high-school football.