Cargando…

(1)H, (13)C, and (15)N backbone chemical shift assignments of the apo and the ADP-ribose bound forms of the macrodomain of SARS-CoV-2 non-structural protein 3b

The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project COVID19-NMR, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein Nsp3b, a domain of Nsp3. The 217-kDa large Nsp3 protein co...

Descripción completa

Detalles Bibliográficos
Autores principales: Cantini, F., Banci, L., Altincekic, N., Bains, J. K., Dhamotharan, K., Fuks, C., Fürtig, B., Gande, S. L., Hargittay, B., Hengesbach, M., Hutchison, M. T., Korn, S. M., Kubatova, N., Kutz, F., Linhard, V., Löhr, F., Meiser, N., Pyper, D. J., Qureshi, N. S., Richter, C., Saxena, K., Schlundt, A., Schwalbe, H., Sreeramulu, S., Tants, J.-N., Wacker, A., Weigand, J. E., Wöhnert, J., Tsika, A. C., Fourkiotis, N. K., Spyroulias, G. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428200/
https://www.ncbi.nlm.nih.gov/pubmed/32803496
http://dx.doi.org/10.1007/s12104-020-09973-4
Descripción
Sumario:The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project COVID19-NMR, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein Nsp3b, a domain of Nsp3. The 217-kDa large Nsp3 protein contains multiple structurally independent, yet functionally related domains including the viral papain-like protease and Nsp3b, a macrodomain (MD). In general, the MDs of SARS-CoV and MERS-CoV were suggested to play a key role in viral replication by modulating the immune response of the host. The MDs are structurally conserved. They most likely remove ADP-ribose, a common posttranslational modification, from protein side chains. This de-ADP ribosylating function has potentially evolved to protect the virus from the anti-viral ADP-ribosylation catalyzed by poly-ADP-ribose polymerases (PARPs), which in turn are triggered by pathogen-associated sensing of the host immune system. This renders the SARS-CoV-2 Nsp3b a highly relevant drug target in the viral replication process. We here report the near-complete NMR backbone resonance assignment ((1)H, (13)C, (15)N) of the putative Nsp3b MD in its apo form and in complex with ADP-ribose. Furthermore, we derive the secondary structure of Nsp3b in solution. In addition, (15)N-relaxation data suggest an ordered, rigid core of the MD structure. These data will provide a basis for NMR investigations targeted at obtaining small-molecule inhibitors interfering with the catalytic activity of Nsp3b.