Cargando…
Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models
We present a consensus atlas of the human brain transcriptome in Alzheimer’s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428328/ https://www.ncbi.nlm.nih.gov/pubmed/32668255 http://dx.doi.org/10.1016/j.celrep.2020.107908 |
_version_ | 1783571051207196672 |
---|---|
author | Wan, Ying-Wooi Al-Ouran, Rami Mangleburg, Carl G. Perumal, Thanneer M. Lee, Tom V. Allison, Katherine Swarup, Vivek Funk, Cory C. Gaiteri, Chris Allen, Mariet Wang, Minghui Neuner, Sarah M. Kaczorowski, Catherine C. Philip, Vivek M. Howell, Gareth R. Martini-Stoica, Heidi Zheng, Hui Mei, Hongkang Zhong, Xiaoyan Kim, Jungwoo Wren Dawson, Valina L. Dawson, Ted M. Pao, Ping-Chieh Tsai, Li-Huei Haure-Mirande, Jean-Vianney Ehrlich, Michelle E. Chakrabarty, Paramita Levites, Yona Wang, Xue Dammer, Eric B. Srivastava, Gyan Mukherjee, Sumit Sieberts, Solveig K. Omberg, Larsson Dang, Kristen D. Eddy, James A. Snyder, Phil Chae, Yooree Amberkar, Sandeep Wei, Wenbin Hide, Winston Preuss, Christoph Ergun, Ayla Ebert, Phillip J. Airey, David C. Mostafavi, Sara Yu, Lei Klein, Hans-Ulrich Carter, Gregory W. Collier, David A. Golde, Todd E. Levey, Allan I. Bennett, David A. Estrada, Karol Townsend, T. Matthew Zhang, Bin Schadt, Eric De Jager, Philip L. Price, Nathan D. Ertekin-Taner, Nilüfer Liu, Zhandong Shulman, Joshua M. Mangravite, Lara M. Logsdon, Benjamin A. |
author_facet | Wan, Ying-Wooi Al-Ouran, Rami Mangleburg, Carl G. Perumal, Thanneer M. Lee, Tom V. Allison, Katherine Swarup, Vivek Funk, Cory C. Gaiteri, Chris Allen, Mariet Wang, Minghui Neuner, Sarah M. Kaczorowski, Catherine C. Philip, Vivek M. Howell, Gareth R. Martini-Stoica, Heidi Zheng, Hui Mei, Hongkang Zhong, Xiaoyan Kim, Jungwoo Wren Dawson, Valina L. Dawson, Ted M. Pao, Ping-Chieh Tsai, Li-Huei Haure-Mirande, Jean-Vianney Ehrlich, Michelle E. Chakrabarty, Paramita Levites, Yona Wang, Xue Dammer, Eric B. Srivastava, Gyan Mukherjee, Sumit Sieberts, Solveig K. Omberg, Larsson Dang, Kristen D. Eddy, James A. Snyder, Phil Chae, Yooree Amberkar, Sandeep Wei, Wenbin Hide, Winston Preuss, Christoph Ergun, Ayla Ebert, Phillip J. Airey, David C. Mostafavi, Sara Yu, Lei Klein, Hans-Ulrich Carter, Gregory W. Collier, David A. Golde, Todd E. Levey, Allan I. Bennett, David A. Estrada, Karol Townsend, T. Matthew Zhang, Bin Schadt, Eric De Jager, Philip L. Price, Nathan D. Ertekin-Taner, Nilüfer Liu, Zhandong Shulman, Joshua M. Mangravite, Lara M. Logsdon, Benjamin A. |
author_sort | Wan, Ying-Wooi |
collection | PubMed |
description | We present a consensus atlas of the human brain transcriptome in Alzheimer’s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington’s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies. |
format | Online Article Text |
id | pubmed-7428328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-74283282020-08-14 Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models Wan, Ying-Wooi Al-Ouran, Rami Mangleburg, Carl G. Perumal, Thanneer M. Lee, Tom V. Allison, Katherine Swarup, Vivek Funk, Cory C. Gaiteri, Chris Allen, Mariet Wang, Minghui Neuner, Sarah M. Kaczorowski, Catherine C. Philip, Vivek M. Howell, Gareth R. Martini-Stoica, Heidi Zheng, Hui Mei, Hongkang Zhong, Xiaoyan Kim, Jungwoo Wren Dawson, Valina L. Dawson, Ted M. Pao, Ping-Chieh Tsai, Li-Huei Haure-Mirande, Jean-Vianney Ehrlich, Michelle E. Chakrabarty, Paramita Levites, Yona Wang, Xue Dammer, Eric B. Srivastava, Gyan Mukherjee, Sumit Sieberts, Solveig K. Omberg, Larsson Dang, Kristen D. Eddy, James A. Snyder, Phil Chae, Yooree Amberkar, Sandeep Wei, Wenbin Hide, Winston Preuss, Christoph Ergun, Ayla Ebert, Phillip J. Airey, David C. Mostafavi, Sara Yu, Lei Klein, Hans-Ulrich Carter, Gregory W. Collier, David A. Golde, Todd E. Levey, Allan I. Bennett, David A. Estrada, Karol Townsend, T. Matthew Zhang, Bin Schadt, Eric De Jager, Philip L. Price, Nathan D. Ertekin-Taner, Nilüfer Liu, Zhandong Shulman, Joshua M. Mangravite, Lara M. Logsdon, Benjamin A. Cell Rep Article We present a consensus atlas of the human brain transcriptome in Alzheimer’s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington’s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies. 2020-07-14 /pmc/articles/PMC7428328/ /pubmed/32668255 http://dx.doi.org/10.1016/j.celrep.2020.107908 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wan, Ying-Wooi Al-Ouran, Rami Mangleburg, Carl G. Perumal, Thanneer M. Lee, Tom V. Allison, Katherine Swarup, Vivek Funk, Cory C. Gaiteri, Chris Allen, Mariet Wang, Minghui Neuner, Sarah M. Kaczorowski, Catherine C. Philip, Vivek M. Howell, Gareth R. Martini-Stoica, Heidi Zheng, Hui Mei, Hongkang Zhong, Xiaoyan Kim, Jungwoo Wren Dawson, Valina L. Dawson, Ted M. Pao, Ping-Chieh Tsai, Li-Huei Haure-Mirande, Jean-Vianney Ehrlich, Michelle E. Chakrabarty, Paramita Levites, Yona Wang, Xue Dammer, Eric B. Srivastava, Gyan Mukherjee, Sumit Sieberts, Solveig K. Omberg, Larsson Dang, Kristen D. Eddy, James A. Snyder, Phil Chae, Yooree Amberkar, Sandeep Wei, Wenbin Hide, Winston Preuss, Christoph Ergun, Ayla Ebert, Phillip J. Airey, David C. Mostafavi, Sara Yu, Lei Klein, Hans-Ulrich Carter, Gregory W. Collier, David A. Golde, Todd E. Levey, Allan I. Bennett, David A. Estrada, Karol Townsend, T. Matthew Zhang, Bin Schadt, Eric De Jager, Philip L. Price, Nathan D. Ertekin-Taner, Nilüfer Liu, Zhandong Shulman, Joshua M. Mangravite, Lara M. Logsdon, Benjamin A. Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title | Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title_full | Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title_fullStr | Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title_full_unstemmed | Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title_short | Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models |
title_sort | meta-analysis of the alzheimer’s disease human brain transcriptome and functional dissection in mouse models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428328/ https://www.ncbi.nlm.nih.gov/pubmed/32668255 http://dx.doi.org/10.1016/j.celrep.2020.107908 |
work_keys_str_mv | AT wanyingwooi metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT alouranrami metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT mangleburgcarlg metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT perumalthanneerm metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT leetomv metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT allisonkatherine metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT swarupvivek metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT funkcoryc metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT gaiterichris metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT allenmariet metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT wangminghui metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT neunersarahm metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT kaczorowskicatherinec metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT philipvivekm metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT howellgarethr metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT martinistoicaheidi metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT zhenghui metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT meihongkang metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT zhongxiaoyan metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT kimjungwoowren metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT dawsonvalinal metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT dawsontedm metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT paopingchieh metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT tsailihuei metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT hauremirandejeanvianney metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT ehrlichmichellee metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT chakrabartyparamita metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT levitesyona metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT wangxue metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT dammerericb metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT srivastavagyan metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT mukherjeesumit metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT siebertssolveigk metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT omberglarsson metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT dangkristend metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT eddyjamesa metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT snyderphil metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT chaeyooree metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT amberkarsandeep metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT weiwenbin metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT hidewinston metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT preusschristoph metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT ergunayla metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT ebertphillipj metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT aireydavidc metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT mostafavisara metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT yulei metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT kleinhansulrich metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT cartergregoryw metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT collierdavida metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT goldetodde metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT leveyallani metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT bennettdavida metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT estradakarol metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT townsendtmatthew metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT zhangbin metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT schadteric metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT dejagerphilipl metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT pricenathand metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT ertekintanernilufer metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT liuzhandong metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT shulmanjoshuam metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT mangravitelaram metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels AT logsdonbenjamina metaanalysisofthealzheimersdiseasehumanbraintranscriptomeandfunctionaldissectioninmousemodels |