Cargando…
Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19)
COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428439/ https://www.ncbi.nlm.nih.gov/pubmed/32805314 http://dx.doi.org/10.1016/j.gene.2020.145057 |
_version_ | 1783571073297547264 |
---|---|
author | Arora, Shweta Singh, Prithvi Dohare, Ravins Jha, Rishabh Ali Syed, Mansoor |
author_facet | Arora, Shweta Singh, Prithvi Dohare, Ravins Jha, Rishabh Ali Syed, Mansoor |
author_sort | Arora, Shweta |
collection | PubMed |
description | COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy. |
format | Online Article Text |
id | pubmed-7428439 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74284392020-08-16 Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) Arora, Shweta Singh, Prithvi Dohare, Ravins Jha, Rishabh Ali Syed, Mansoor Gene Article COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy. Elsevier B.V. 2020-12-15 2020-08-15 /pmc/articles/PMC7428439/ /pubmed/32805314 http://dx.doi.org/10.1016/j.gene.2020.145057 Text en © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Arora, Shweta Singh, Prithvi Dohare, Ravins Jha, Rishabh Ali Syed, Mansoor Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title | Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title_full | Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title_fullStr | Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title_full_unstemmed | Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title_short | Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19) |
title_sort | unravelling host-pathogen interactions: cerna network in sars-cov-2 infection (covid-19) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428439/ https://www.ncbi.nlm.nih.gov/pubmed/32805314 http://dx.doi.org/10.1016/j.gene.2020.145057 |
work_keys_str_mv | AT arorashweta unravellinghostpathogeninteractionscernanetworkinsarscov2infectioncovid19 AT singhprithvi unravellinghostpathogeninteractionscernanetworkinsarscov2infectioncovid19 AT dohareravins unravellinghostpathogeninteractionscernanetworkinsarscov2infectioncovid19 AT jharishabh unravellinghostpathogeninteractionscernanetworkinsarscov2infectioncovid19 AT alisyedmansoor unravellinghostpathogeninteractionscernanetworkinsarscov2infectioncovid19 |