Cargando…
B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice
BACKGROUND: Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428518/ https://www.ncbi.nlm.nih.gov/pubmed/32295457 http://dx.doi.org/10.1161/JAHA.119.015748 |
_version_ | 1783571090793037824 |
---|---|
author | Devarakonda, Teja Mauro, Adolfo G. Guzman, Geronimo Hovsepian, Sahak Cain, Chad Das, Anindita Praveen, Praveen Hossain, Mohammed Akhter Salloum, Fadi N. |
author_facet | Devarakonda, Teja Mauro, Adolfo G. Guzman, Geronimo Hovsepian, Sahak Cain, Chad Das, Anindita Praveen, Praveen Hossain, Mohammed Akhter Salloum, Fadi N. |
author_sort | Devarakonda, Teja |
collection | PubMed |
description | BACKGROUND: Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. METHODS AND RESULTS: Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. CONCLUSIONS: B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function. |
format | Online Article Text |
id | pubmed-7428518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74285182020-08-17 B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice Devarakonda, Teja Mauro, Adolfo G. Guzman, Geronimo Hovsepian, Sahak Cain, Chad Das, Anindita Praveen, Praveen Hossain, Mohammed Akhter Salloum, Fadi N. J Am Heart Assoc Original Research BACKGROUND: Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. METHODS AND RESULTS: Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. CONCLUSIONS: B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function. John Wiley and Sons Inc. 2020-04-16 /pmc/articles/PMC7428518/ /pubmed/32295457 http://dx.doi.org/10.1161/JAHA.119.015748 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Devarakonda, Teja Mauro, Adolfo G. Guzman, Geronimo Hovsepian, Sahak Cain, Chad Das, Anindita Praveen, Praveen Hossain, Mohammed Akhter Salloum, Fadi N. B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title | B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title_full | B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title_fullStr | B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title_full_unstemmed | B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title_short | B7‐33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice |
title_sort | b7‐33, a functionally selective relaxin receptor 1 agonist, attenuates myocardial infarction–related adverse cardiac remodeling in mice |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428518/ https://www.ncbi.nlm.nih.gov/pubmed/32295457 http://dx.doi.org/10.1161/JAHA.119.015748 |
work_keys_str_mv | AT devarakondateja b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT mauroadolfog b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT guzmangeronimo b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT hovsepiansahak b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT cainchad b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT dasanindita b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT praveenpraveen b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT hossainmohammedakhter b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice AT salloumfadin b733afunctionallyselectiverelaxinreceptor1agonistattenuatesmyocardialinfarctionrelatedadversecardiacremodelinginmice |