Cargando…
Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants
BACKGROUND: Hypertrophic cardiomyopathy is caused by pathogenic sarcomere gene variants. Individuals with a thin‐filament variant present with milder hypertrophy than carriers of thick‐filament variants, although prognosis is poorer. Herein, we defined if decreased energetic status of the heart is a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428531/ https://www.ncbi.nlm.nih.gov/pubmed/32290750 http://dx.doi.org/10.1161/JAHA.119.015316 |
_version_ | 1783571093866414080 |
---|---|
author | Parbhudayal, Rahana Y. Harms, Hendrik J. Michels, Michelle van Rossum, Albert C. Germans, Tjeerd van der Velden, Jolanda |
author_facet | Parbhudayal, Rahana Y. Harms, Hendrik J. Michels, Michelle van Rossum, Albert C. Germans, Tjeerd van der Velden, Jolanda |
author_sort | Parbhudayal, Rahana Y. |
collection | PubMed |
description | BACKGROUND: Hypertrophic cardiomyopathy is caused by pathogenic sarcomere gene variants. Individuals with a thin‐filament variant present with milder hypertrophy than carriers of thick‐filament variants, although prognosis is poorer. Herein, we defined if decreased energetic status of the heart is an early pathomechanism in TNNT2 (troponin T gene) variant carriers. METHODS AND RESULTS: Fourteen individuals with TNNT2 variants (genotype positive), without left ventricular hypertrophy (G+/LVH−; n=6) and with LVH (G+/LVH+; n=8) and 14 healthy controls were included. All participants underwent cardiac magnetic resonance and [(11)C]‐acetate positron emission tomography imaging to assess LV myocardial oxygen consumption, contractile parameters and myocardial external efficiency. Cardiac efficiency was significantly reduced compared with controls in G+/LVH− and G+/LVH+. Lower myocardial external efficiency in G+/LVH− is explained by higher global and regional oxygen consumption compared with controls without changes in contractile parameters. Reduced myocardial external efficiency in G+/LVH+ is explained by the increase in LV mass and higher oxygen consumption. Septal oxygen consumption was significantly lower in G+/LVH+ compared with G+/LVH−. Although LV ejection fraction was higher in G+/LVH+, both systolic and diastolic strain parameters were lower compared with controls, which was most evident in the hypertrophied septal wall. CONCLUSIONS: Using cardiac magnetic resonance and [(11)C]‐acetate positron emission tomography imaging, we show that G+/LVH− have an initial increase in oxygen consumption preceding contractile dysfunction and cardiac hypertrophy, followed by a decline in oxygen consumption in G+/LVH+. This suggests that high oxygen consumption and reduced myocardial external efficiency characterize the early gene variant–mediated disease mechanisms that may be used for early diagnosis and development of preventive treatments. |
format | Online Article Text |
id | pubmed-7428531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74285312020-08-17 Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants Parbhudayal, Rahana Y. Harms, Hendrik J. Michels, Michelle van Rossum, Albert C. Germans, Tjeerd van der Velden, Jolanda J Am Heart Assoc Original Research BACKGROUND: Hypertrophic cardiomyopathy is caused by pathogenic sarcomere gene variants. Individuals with a thin‐filament variant present with milder hypertrophy than carriers of thick‐filament variants, although prognosis is poorer. Herein, we defined if decreased energetic status of the heart is an early pathomechanism in TNNT2 (troponin T gene) variant carriers. METHODS AND RESULTS: Fourteen individuals with TNNT2 variants (genotype positive), without left ventricular hypertrophy (G+/LVH−; n=6) and with LVH (G+/LVH+; n=8) and 14 healthy controls were included. All participants underwent cardiac magnetic resonance and [(11)C]‐acetate positron emission tomography imaging to assess LV myocardial oxygen consumption, contractile parameters and myocardial external efficiency. Cardiac efficiency was significantly reduced compared with controls in G+/LVH− and G+/LVH+. Lower myocardial external efficiency in G+/LVH− is explained by higher global and regional oxygen consumption compared with controls without changes in contractile parameters. Reduced myocardial external efficiency in G+/LVH+ is explained by the increase in LV mass and higher oxygen consumption. Septal oxygen consumption was significantly lower in G+/LVH+ compared with G+/LVH−. Although LV ejection fraction was higher in G+/LVH+, both systolic and diastolic strain parameters were lower compared with controls, which was most evident in the hypertrophied septal wall. CONCLUSIONS: Using cardiac magnetic resonance and [(11)C]‐acetate positron emission tomography imaging, we show that G+/LVH− have an initial increase in oxygen consumption preceding contractile dysfunction and cardiac hypertrophy, followed by a decline in oxygen consumption in G+/LVH+. This suggests that high oxygen consumption and reduced myocardial external efficiency characterize the early gene variant–mediated disease mechanisms that may be used for early diagnosis and development of preventive treatments. John Wiley and Sons Inc. 2020-04-15 /pmc/articles/PMC7428531/ /pubmed/32290750 http://dx.doi.org/10.1161/JAHA.119.015316 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Parbhudayal, Rahana Y. Harms, Hendrik J. Michels, Michelle van Rossum, Albert C. Germans, Tjeerd van der Velden, Jolanda Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title | Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title_full | Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title_fullStr | Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title_full_unstemmed | Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title_short | Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants |
title_sort | increased myocardial oxygen consumption precedes contractile dysfunction in hypertrophic cardiomyopathy caused by pathogenic tnnt2 gene variants |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428531/ https://www.ncbi.nlm.nih.gov/pubmed/32290750 http://dx.doi.org/10.1161/JAHA.119.015316 |
work_keys_str_mv | AT parbhudayalrahanay increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants AT harmshendrikj increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants AT michelsmichelle increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants AT vanrossumalbertc increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants AT germanstjeerd increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants AT vanderveldenjolanda increasedmyocardialoxygenconsumptionprecedescontractiledysfunctioninhypertrophiccardiomyopathycausedbypathogenictnnt2genevariants |