Cargando…
Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics
BACKGROUND: Epigenome‐wide association studies for cardiometabolic risk factors have discovered multiple loci associated with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor of CVD risk. Furthermore, it is challenging to train multivariate mod...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428544/ https://www.ncbi.nlm.nih.gov/pubmed/32308120 http://dx.doi.org/10.1161/JAHA.119.015299 |
_version_ | 1783571096898895872 |
---|---|
author | Westerman, Kenneth Fernández‐Sanlés, Alba Patil, Prasad Sebastiani, Paola Jacques, Paul Starr, John M. J. Deary, Ian Liu, Qing Liu, Simin Elosua, Roberto DeMeo, Dawn L. Ordovás, José M. |
author_facet | Westerman, Kenneth Fernández‐Sanlés, Alba Patil, Prasad Sebastiani, Paola Jacques, Paul Starr, John M. J. Deary, Ian Liu, Qing Liu, Simin Elosua, Roberto DeMeo, Dawn L. Ordovás, José M. |
author_sort | Westerman, Kenneth |
collection | PubMed |
description | BACKGROUND: Epigenome‐wide association studies for cardiometabolic risk factors have discovered multiple loci associated with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor of CVD risk. Furthermore, it is challenging to train multivariate models across multiple studies in the presence of study‐ or batch effects. METHODS AND RESULTS: Here, we analyzed existing DNA methylation data collected using the Illumina HumanMethylation450 microarray to create a predictor of CVD risk across 3 cohorts: Women's Health Initiative, Framingham Heart Study Offspring Cohort, and Lothian Birth Cohorts. We trained Cox proportional hazards‐based elastic net regressions for incident CVD separately in each cohort and used a recently introduced cross‐study learning approach to integrate these individual scores into an ensemble predictor. The methylation‐based risk score was associated with CVD time‐to‐event in a held‐out fraction of the Framingham data set (hazard ratio per SD=1.28, 95% CI, 1.10–1.50) and predicted myocardial infarction status in the independent REGICOR (Girona Heart Registry) data set (odds ratio per SD=2.14, 95% CI, 1.58–2.89). These associations remained after adjustment for traditional cardiovascular risk factors and were similar to those from elastic net models trained on a directly merged data set. Additionally, we investigated interactions between the methylation‐based risk score and both genetic and biochemical CVD risk, showing preliminary evidence of an enhanced performance in those with less traditional risk factor elevation. CONCLUSIONS: This investigation provides proof‐of‐concept for a genome‐wide, CVD‐specific epigenomic risk score and suggests that DNA methylation data may enable the discovery of high‐risk individuals who would be missed by alternative risk metrics. |
format | Online Article Text |
id | pubmed-7428544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74285442020-08-17 Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics Westerman, Kenneth Fernández‐Sanlés, Alba Patil, Prasad Sebastiani, Paola Jacques, Paul Starr, John M. J. Deary, Ian Liu, Qing Liu, Simin Elosua, Roberto DeMeo, Dawn L. Ordovás, José M. J Am Heart Assoc Original Research BACKGROUND: Epigenome‐wide association studies for cardiometabolic risk factors have discovered multiple loci associated with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor of CVD risk. Furthermore, it is challenging to train multivariate models across multiple studies in the presence of study‐ or batch effects. METHODS AND RESULTS: Here, we analyzed existing DNA methylation data collected using the Illumina HumanMethylation450 microarray to create a predictor of CVD risk across 3 cohorts: Women's Health Initiative, Framingham Heart Study Offspring Cohort, and Lothian Birth Cohorts. We trained Cox proportional hazards‐based elastic net regressions for incident CVD separately in each cohort and used a recently introduced cross‐study learning approach to integrate these individual scores into an ensemble predictor. The methylation‐based risk score was associated with CVD time‐to‐event in a held‐out fraction of the Framingham data set (hazard ratio per SD=1.28, 95% CI, 1.10–1.50) and predicted myocardial infarction status in the independent REGICOR (Girona Heart Registry) data set (odds ratio per SD=2.14, 95% CI, 1.58–2.89). These associations remained after adjustment for traditional cardiovascular risk factors and were similar to those from elastic net models trained on a directly merged data set. Additionally, we investigated interactions between the methylation‐based risk score and both genetic and biochemical CVD risk, showing preliminary evidence of an enhanced performance in those with less traditional risk factor elevation. CONCLUSIONS: This investigation provides proof‐of‐concept for a genome‐wide, CVD‐specific epigenomic risk score and suggests that DNA methylation data may enable the discovery of high‐risk individuals who would be missed by alternative risk metrics. John Wiley and Sons Inc. 2020-04-20 /pmc/articles/PMC7428544/ /pubmed/32308120 http://dx.doi.org/10.1161/JAHA.119.015299 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Westerman, Kenneth Fernández‐Sanlés, Alba Patil, Prasad Sebastiani, Paola Jacques, Paul Starr, John M. J. Deary, Ian Liu, Qing Liu, Simin Elosua, Roberto DeMeo, Dawn L. Ordovás, José M. Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title | Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title_full | Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title_fullStr | Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title_full_unstemmed | Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title_short | Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics |
title_sort | epigenomic assessment of cardiovascular disease risk and interactions with traditional risk metrics |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428544/ https://www.ncbi.nlm.nih.gov/pubmed/32308120 http://dx.doi.org/10.1161/JAHA.119.015299 |
work_keys_str_mv | AT westermankenneth epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT fernandezsanlesalba epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT patilprasad epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT sebastianipaola epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT jacquespaul epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT starrjohnm epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT jdearyian epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT liuqing epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT liusimin epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT elosuaroberto epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT demeodawnl epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics AT ordovasjosem epigenomicassessmentofcardiovasculardiseaseriskandinteractionswithtraditionalriskmetrics |