Cargando…

Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors

We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Vuorinen, Ville, Aarnio, Mia, Alava, Mikko, Alopaeus, Ville, Atanasova, Nina, Auvinen, Mikko, Balasubramanian, Nallannan, Bordbar, Hadi, Erästö, Panu, Grande, Rafael, Hayward, Nick, Hellsten, Antti, Hostikka, Simo, Hokkanen, Jyrki, Kaario, Ossi, Karvinen, Aku, Kivistö, Ilkka, Korhonen, Marko, Kosonen, Risto, Kuusela, Janne, Lestinen, Sami, Laurila, Erkki, Nieminen, Heikki J., Peltonen, Petteri, Pokki, Juho, Puisto, Antti, Råback, Peter, Salmenjoki, Henri, Sironen, Tarja, Österberg, Monika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428778/
https://www.ncbi.nlm.nih.gov/pubmed/32834511
http://dx.doi.org/10.1016/j.ssci.2020.104866
_version_ 1783571152362274816
author Vuorinen, Ville
Aarnio, Mia
Alava, Mikko
Alopaeus, Ville
Atanasova, Nina
Auvinen, Mikko
Balasubramanian, Nallannan
Bordbar, Hadi
Erästö, Panu
Grande, Rafael
Hayward, Nick
Hellsten, Antti
Hostikka, Simo
Hokkanen, Jyrki
Kaario, Ossi
Karvinen, Aku
Kivistö, Ilkka
Korhonen, Marko
Kosonen, Risto
Kuusela, Janne
Lestinen, Sami
Laurila, Erkki
Nieminen, Heikki J.
Peltonen, Petteri
Pokki, Juho
Puisto, Antti
Råback, Peter
Salmenjoki, Henri
Sironen, Tarja
Österberg, Monika
author_facet Vuorinen, Ville
Aarnio, Mia
Alava, Mikko
Alopaeus, Ville
Atanasova, Nina
Auvinen, Mikko
Balasubramanian, Nallannan
Bordbar, Hadi
Erästö, Panu
Grande, Rafael
Hayward, Nick
Hellsten, Antti
Hostikka, Simo
Hokkanen, Jyrki
Kaario, Ossi
Karvinen, Aku
Kivistö, Ilkka
Korhonen, Marko
Kosonen, Risto
Kuusela, Janne
Lestinen, Sami
Laurila, Erkki
Nieminen, Heikki J.
Peltonen, Petteri
Pokki, Juho
Puisto, Antti
Råback, Peter
Salmenjoki, Henri
Sironen, Tarja
Österberg, Monika
author_sort Vuorinen, Ville
collection PubMed
description We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets ([Formula: see text]) allows lingering in the air for [Formula: see text]) so that they could be inhaled. Consistent with the previous literature, numerical evidence on the rapid drying process of even large droplets, up to sizes [Formula: see text] , into droplet nuclei/aerosols is provided. Based on the literature and the public media sources, we provide evidence that the individuals, who have been tested positive on COVID-19, could have been exposed to aerosols/droplet nuclei by inhaling them in significant numbers e.g. [Formula: see text]. By 3D scale-resolving computational fluid dynamics (CFD) simulations, we give various examples on the transport and dilution of aerosols ([Formula: see text]) over distances [Formula: see text] in generic environments. We study susceptible and infected individuals in generic public places by Monte-Carlo modelling. The developed model takes into account the locally varying aerosol concentration levels which the susceptible accumulate via inhalation. The introduced concept, ’exposure time’ to virus containing aerosols is proposed to complement the traditional ’safety distance’ thinking. We show that the exposure time to inhale [Formula: see text] aerosols could range from [Formula: see text] to [Formula: see text] or even to [Formula: see text] depending on the situation. The Monte-Carlo simulations, along with the theory, provide clear quantitative insight to the exposure time in different public indoor environments.
format Online
Article
Text
id pubmed-7428778
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Authors. Published by Elsevier Ltd.
record_format MEDLINE/PubMed
spelling pubmed-74287782020-08-17 Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors Vuorinen, Ville Aarnio, Mia Alava, Mikko Alopaeus, Ville Atanasova, Nina Auvinen, Mikko Balasubramanian, Nallannan Bordbar, Hadi Erästö, Panu Grande, Rafael Hayward, Nick Hellsten, Antti Hostikka, Simo Hokkanen, Jyrki Kaario, Ossi Karvinen, Aku Kivistö, Ilkka Korhonen, Marko Kosonen, Risto Kuusela, Janne Lestinen, Sami Laurila, Erkki Nieminen, Heikki J. Peltonen, Petteri Pokki, Juho Puisto, Antti Råback, Peter Salmenjoki, Henri Sironen, Tarja Österberg, Monika Saf Sci Article We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets ([Formula: see text]) allows lingering in the air for [Formula: see text]) so that they could be inhaled. Consistent with the previous literature, numerical evidence on the rapid drying process of even large droplets, up to sizes [Formula: see text] , into droplet nuclei/aerosols is provided. Based on the literature and the public media sources, we provide evidence that the individuals, who have been tested positive on COVID-19, could have been exposed to aerosols/droplet nuclei by inhaling them in significant numbers e.g. [Formula: see text]. By 3D scale-resolving computational fluid dynamics (CFD) simulations, we give various examples on the transport and dilution of aerosols ([Formula: see text]) over distances [Formula: see text] in generic environments. We study susceptible and infected individuals in generic public places by Monte-Carlo modelling. The developed model takes into account the locally varying aerosol concentration levels which the susceptible accumulate via inhalation. The introduced concept, ’exposure time’ to virus containing aerosols is proposed to complement the traditional ’safety distance’ thinking. We show that the exposure time to inhale [Formula: see text] aerosols could range from [Formula: see text] to [Formula: see text] or even to [Formula: see text] depending on the situation. The Monte-Carlo simulations, along with the theory, provide clear quantitative insight to the exposure time in different public indoor environments. The Authors. Published by Elsevier Ltd. 2020-10 2020-06-11 /pmc/articles/PMC7428778/ /pubmed/32834511 http://dx.doi.org/10.1016/j.ssci.2020.104866 Text en © 2020 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Vuorinen, Ville
Aarnio, Mia
Alava, Mikko
Alopaeus, Ville
Atanasova, Nina
Auvinen, Mikko
Balasubramanian, Nallannan
Bordbar, Hadi
Erästö, Panu
Grande, Rafael
Hayward, Nick
Hellsten, Antti
Hostikka, Simo
Hokkanen, Jyrki
Kaario, Ossi
Karvinen, Aku
Kivistö, Ilkka
Korhonen, Marko
Kosonen, Risto
Kuusela, Janne
Lestinen, Sami
Laurila, Erkki
Nieminen, Heikki J.
Peltonen, Petteri
Pokki, Juho
Puisto, Antti
Råback, Peter
Salmenjoki, Henri
Sironen, Tarja
Österberg, Monika
Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title_full Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title_fullStr Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title_full_unstemmed Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title_short Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
title_sort modelling aerosol transport and virus exposure with numerical simulations in relation to sars-cov-2 transmission by inhalation indoors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428778/
https://www.ncbi.nlm.nih.gov/pubmed/32834511
http://dx.doi.org/10.1016/j.ssci.2020.104866
work_keys_str_mv AT vuorinenville modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT aarniomia modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT alavamikko modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT alopaeusville modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT atanasovanina modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT auvinenmikko modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT balasubramaniannallannan modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT bordbarhadi modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT erastopanu modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT granderafael modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT haywardnick modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT hellstenantti modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT hostikkasimo modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT hokkanenjyrki modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT kaarioossi modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT karvinenaku modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT kivistoilkka modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT korhonenmarko modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT kosonenristo modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT kuuselajanne modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT lestinensami modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT laurilaerkki modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT nieminenheikkij modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT peltonenpetteri modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT pokkijuho modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT puistoantti modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT rabackpeter modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT salmenjokihenri modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT sironentarja modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors
AT osterbergmonika modellingaerosoltransportandvirusexposurewithnumericalsimulationsinrelationtosarscov2transmissionbyinhalationindoors