Cargando…
Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study
BACKGROUND: Asthma exacerbation is an acute or subacute episode of progressive worsening of asthma symptoms and can have a significant impact on patients’ quality of life. However, efficient methods that can help identify personalized risk factors and make early predictions are lacking. OBJECTIVE: T...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428917/ https://www.ncbi.nlm.nih.gov/pubmed/32735224 http://dx.doi.org/10.2196/16981 |
_version_ | 1783571177265954816 |
---|---|
author | Xiang, Yang Ji, Hangyu Zhou, Yujia Li, Fang Du, Jingcheng Rasmy, Laila Wu, Stephen Zheng, W Jim Xu, Hua Zhi, Degui Zhang, Yaoyun Tao, Cui |
author_facet | Xiang, Yang Ji, Hangyu Zhou, Yujia Li, Fang Du, Jingcheng Rasmy, Laila Wu, Stephen Zheng, W Jim Xu, Hua Zhi, Degui Zhang, Yaoyun Tao, Cui |
author_sort | Xiang, Yang |
collection | PubMed |
description | BACKGROUND: Asthma exacerbation is an acute or subacute episode of progressive worsening of asthma symptoms and can have a significant impact on patients’ quality of life. However, efficient methods that can help identify personalized risk factors and make early predictions are lacking. OBJECTIVE: This study aims to use advanced deep learning models to better predict the risk of asthma exacerbations and to explore potential risk factors involved in progressive asthma. METHODS: We proposed a novel time-sensitive, attentive neural network to predict asthma exacerbation using clinical variables from large electronic health records. The clinical variables were collected from the Cerner Health Facts database between 1992 and 2015, including 31,433 adult patients with asthma. Interpretations on both patient and cohort levels were investigated based on the model parameters. RESULTS: The proposed model obtained an area under the curve value of 0.7003 through a five-fold cross-validation, which outperformed the baseline methods. The results also demonstrated that the addition of elapsed time embeddings considerably improved the prediction performance. Further analysis observed diverse distributions of contributing factors across patients as well as some possible cohort-level risk factors, which could be found supporting evidence from peer-reviewed literature such as respiratory diseases and esophageal reflux. CONCLUSIONS: The proposed neural network model performed better than previous methods for the prediction of asthma exacerbation. We believe that personalized risk scores and analyses of contributing factors can help clinicians better assess the individual’s level of disease progression and afford the opportunity to adjust treatment, prevent exacerbation, and improve outcomes. |
format | Online Article Text |
id | pubmed-7428917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-74289172020-08-24 Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study Xiang, Yang Ji, Hangyu Zhou, Yujia Li, Fang Du, Jingcheng Rasmy, Laila Wu, Stephen Zheng, W Jim Xu, Hua Zhi, Degui Zhang, Yaoyun Tao, Cui J Med Internet Res Original Paper BACKGROUND: Asthma exacerbation is an acute or subacute episode of progressive worsening of asthma symptoms and can have a significant impact on patients’ quality of life. However, efficient methods that can help identify personalized risk factors and make early predictions are lacking. OBJECTIVE: This study aims to use advanced deep learning models to better predict the risk of asthma exacerbations and to explore potential risk factors involved in progressive asthma. METHODS: We proposed a novel time-sensitive, attentive neural network to predict asthma exacerbation using clinical variables from large electronic health records. The clinical variables were collected from the Cerner Health Facts database between 1992 and 2015, including 31,433 adult patients with asthma. Interpretations on both patient and cohort levels were investigated based on the model parameters. RESULTS: The proposed model obtained an area under the curve value of 0.7003 through a five-fold cross-validation, which outperformed the baseline methods. The results also demonstrated that the addition of elapsed time embeddings considerably improved the prediction performance. Further analysis observed diverse distributions of contributing factors across patients as well as some possible cohort-level risk factors, which could be found supporting evidence from peer-reviewed literature such as respiratory diseases and esophageal reflux. CONCLUSIONS: The proposed neural network model performed better than previous methods for the prediction of asthma exacerbation. We believe that personalized risk scores and analyses of contributing factors can help clinicians better assess the individual’s level of disease progression and afford the opportunity to adjust treatment, prevent exacerbation, and improve outcomes. JMIR Publications 2020-07-31 /pmc/articles/PMC7428917/ /pubmed/32735224 http://dx.doi.org/10.2196/16981 Text en ©Yang Xiang, Hangyu Ji, Yujia Zhou, Fang Li, Jingcheng Du, Laila Rasmy, Stephen Wu, W Jim Zheng, Hua Xu, Degui Zhi, Yaoyun Zhang, Cui Tao. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.07.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Xiang, Yang Ji, Hangyu Zhou, Yujia Li, Fang Du, Jingcheng Rasmy, Laila Wu, Stephen Zheng, W Jim Xu, Hua Zhi, Degui Zhang, Yaoyun Tao, Cui Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title | Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title_full | Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title_fullStr | Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title_full_unstemmed | Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title_short | Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study |
title_sort | asthma exacerbation prediction and risk factor analysis based on a time-sensitive, attentive neural network: retrospective cohort study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428917/ https://www.ncbi.nlm.nih.gov/pubmed/32735224 http://dx.doi.org/10.2196/16981 |
work_keys_str_mv | AT xiangyang asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT jihangyu asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT zhouyujia asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT lifang asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT dujingcheng asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT rasmylaila asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT wustephen asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT zhengwjim asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT xuhua asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT zhidegui asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT zhangyaoyun asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy AT taocui asthmaexacerbationpredictionandriskfactoranalysisbasedonatimesensitiveattentiveneuralnetworkretrospectivecohortstudy |