Cargando…
A Predictive Model Based on Machine Learning for the Early Detection of Late-Onset Neonatal Sepsis: Development and Observational Study
BACKGROUND: Neonatal sepsis is associated with most cases of mortalities and morbidities in the neonatal intensive care unit (NICU). Many studies have developed prediction models for the early diagnosis of bloodstream infections in newborns, but there are limitations to data collection and managemen...
Autores principales: | Song, Wongeun, Jung, Se Young, Baek, Hyunyoung, Choi, Chang Won, Jung, Young Hwa, Yoo, Sooyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428919/ https://www.ncbi.nlm.nih.gov/pubmed/32735230 http://dx.doi.org/10.2196/15965 |
Ejemplares similares
-
Development and Validation of a Prognostic Classification Model Predicting Postoperative Adverse Outcomes in Older Surgical Patients Using a Machine Learning Algorithm: Retrospective Observational Network Study
por: Choi, Jung-Yeon, et al.
Publicado: (2023) -
Coronary Artery Computed Tomography Angiography for Preventing Cardio-Cerebrovascular Disease: Observational Cohort Study Using the Observational Health Data Sciences and Informatics’ Common Data Model
por: Bae, Woo Kyung, et al.
Publicado: (2022) -
Development of Comprehensive Personal Health Records Integrating Patient-Generated Health Data Directly From Samsung S-Health and Apple Health Apps: Retrospective Cross-Sectional Observational Study
por: Jung, Se Young, et al.
Publicado: (2019) -
Biomarkers for late-onset neonatal sepsis
por: Polin, Richard A, et al.
Publicado: (2010) -
Effectiveness of the Use of Standardized Vocabularies on Epilepsy Patient Cohort Generation
por: Jung, Hyesil, et al.
Publicado: (2022)