Cargando…

A Pipeline to Call Multilevel Expression Changes between Cancer and Normal Tissues and Its Applications in Repurposing Drugs Effective for Gastric Cancer

Differential gene analyses on gastric cancer usually focus on expression change of single genes between tumor and adjacent normal tissues. However, besides changes on single genes, there are also coexpression and expression network module changes during the development of gastric cancer. In this stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Wei, Yang, Jianwei, Zhuo, Changhua, Huang, Sha, Lin, Jinyuan, Wu, Guangfeng, Zhou, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428949/
https://www.ncbi.nlm.nih.gov/pubmed/32832545
http://dx.doi.org/10.1155/2020/3451610
Descripción
Sumario:Differential gene analyses on gastric cancer usually focus on expression change of single genes between tumor and adjacent normal tissues. However, besides changes on single genes, there are also coexpression and expression network module changes during the development of gastric cancer. In this study, we proposed a pipeline to investigate various levels of changes between gastric cancer and adjacent normal tissues, which were used to repurpose potential drugs for treating gastric cancer. Specifically, we performed a series of analyses on 242 gastric cancer samples (33-normal, 209-cancer) downloaded from the cancer genome atlas (TCGA), including data quality control, differential gene analysis, gene coexpression network analysis, module function enrichment analysis, differential coexpression analysis, differential pathway analysis, and screening of potential therapeutic drugs. In the end, we discovered some genes and pathways that are significantly different between cancer and adjacent normal tissues (such as the interleukin-4 and interleukin-13 signaling pathway) and screened perturbed genes by 2703 drugs that have a high overlap with the identified differentially expressed genes. Our pipeline might be useful for understanding cancer pathogenesis as well as gastric cancer treatment.