Cargando…

Maximizing transcription of nucleic acids with efficient T7 promoters

In vitro transcription using T7 bacteriophage polymerase is widely used in molecular biology. Here, we use 5′RACE-Seq to screen a randomized initially transcribed region of the T7 promoter for cross-talk with transcriptional activity. We reveal that sequences from position +4 to +8 downstream of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Conrad, Thomas, Plumbom, Izabela, Alcobendas, Maria, Vidal, Ramon, Sauer, Sascha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429497/
https://www.ncbi.nlm.nih.gov/pubmed/32796901
http://dx.doi.org/10.1038/s42003-020-01167-x
Descripción
Sumario:In vitro transcription using T7 bacteriophage polymerase is widely used in molecular biology. Here, we use 5′RACE-Seq to screen a randomized initially transcribed region of the T7 promoter for cross-talk with transcriptional activity. We reveal that sequences from position +4 to +8 downstream of the transcription start site affect T7 promoter activity over a 5-fold range, and identify promoter variants with significantly enhanced transcriptional output that increase the yield of in vitro transcription reactions across a wide range of template concentrations. We furthermore introduce CEL-Seq(+) , which uses an optimized T7 promoter to amplify cDNA for single-cell RNA-Sequencing. CEL-Seq+ facilitates scRNA-Seq library preparation, and substantially increases library complexity and the number of expressed genes detected per cell, highlighting a particular value of optimized T7 promoters in bioanalytical applications.