Cargando…
Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of d...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429815/ https://www.ncbi.nlm.nih.gov/pubmed/32796848 http://dx.doi.org/10.1038/s41467-020-17971-2 |
_version_ | 1783571323624095744 |
---|---|
author | Harmon, Stephanie A. Sanford, Thomas H. Xu, Sheng Turkbey, Evrim B. Roth, Holger Xu, Ziyue Yang, Dong Myronenko, Andriy Anderson, Victoria Amalou, Amel Blain, Maxime Kassin, Michael Long, Dilara Varble, Nicole Walker, Stephanie M. Bagci, Ulas Ierardi, Anna Maria Stellato, Elvira Plensich, Guido Giovanni Franceschelli, Giuseppe Girlando, Cristiano Irmici, Giovanni Labella, Dominic Hammoud, Dima Malayeri, Ashkan Jones, Elizabeth Summers, Ronald M. Choyke, Peter L. Xu, Daguang Flores, Mona Tamura, Kaku Obinata, Hirofumi Mori, Hitoshi Patella, Francesca Cariati, Maurizio Carrafiello, Gianpaolo An, Peng Wood, Bradford J. Turkbey, Baris |
author_facet | Harmon, Stephanie A. Sanford, Thomas H. Xu, Sheng Turkbey, Evrim B. Roth, Holger Xu, Ziyue Yang, Dong Myronenko, Andriy Anderson, Victoria Amalou, Amel Blain, Maxime Kassin, Michael Long, Dilara Varble, Nicole Walker, Stephanie M. Bagci, Ulas Ierardi, Anna Maria Stellato, Elvira Plensich, Guido Giovanni Franceschelli, Giuseppe Girlando, Cristiano Irmici, Giovanni Labella, Dominic Hammoud, Dima Malayeri, Ashkan Jones, Elizabeth Summers, Ronald M. Choyke, Peter L. Xu, Daguang Flores, Mona Tamura, Kaku Obinata, Hirofumi Mori, Hitoshi Patella, Francesca Cariati, Maurizio Carrafiello, Gianpaolo An, Peng Wood, Bradford J. Turkbey, Baris |
author_sort | Harmon, Stephanie A. |
collection | PubMed |
description | Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations. |
format | Online Article Text |
id | pubmed-7429815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74298152020-08-28 Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets Harmon, Stephanie A. Sanford, Thomas H. Xu, Sheng Turkbey, Evrim B. Roth, Holger Xu, Ziyue Yang, Dong Myronenko, Andriy Anderson, Victoria Amalou, Amel Blain, Maxime Kassin, Michael Long, Dilara Varble, Nicole Walker, Stephanie M. Bagci, Ulas Ierardi, Anna Maria Stellato, Elvira Plensich, Guido Giovanni Franceschelli, Giuseppe Girlando, Cristiano Irmici, Giovanni Labella, Dominic Hammoud, Dima Malayeri, Ashkan Jones, Elizabeth Summers, Ronald M. Choyke, Peter L. Xu, Daguang Flores, Mona Tamura, Kaku Obinata, Hirofumi Mori, Hitoshi Patella, Francesca Cariati, Maurizio Carrafiello, Gianpaolo An, Peng Wood, Bradford J. Turkbey, Baris Nat Commun Article Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations. Nature Publishing Group UK 2020-08-14 /pmc/articles/PMC7429815/ /pubmed/32796848 http://dx.doi.org/10.1038/s41467-020-17971-2 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Harmon, Stephanie A. Sanford, Thomas H. Xu, Sheng Turkbey, Evrim B. Roth, Holger Xu, Ziyue Yang, Dong Myronenko, Andriy Anderson, Victoria Amalou, Amel Blain, Maxime Kassin, Michael Long, Dilara Varble, Nicole Walker, Stephanie M. Bagci, Ulas Ierardi, Anna Maria Stellato, Elvira Plensich, Guido Giovanni Franceschelli, Giuseppe Girlando, Cristiano Irmici, Giovanni Labella, Dominic Hammoud, Dima Malayeri, Ashkan Jones, Elizabeth Summers, Ronald M. Choyke, Peter L. Xu, Daguang Flores, Mona Tamura, Kaku Obinata, Hirofumi Mori, Hitoshi Patella, Francesca Cariati, Maurizio Carrafiello, Gianpaolo An, Peng Wood, Bradford J. Turkbey, Baris Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title | Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title_full | Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title_fullStr | Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title_full_unstemmed | Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title_short | Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets |
title_sort | artificial intelligence for the detection of covid-19 pneumonia on chest ct using multinational datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429815/ https://www.ncbi.nlm.nih.gov/pubmed/32796848 http://dx.doi.org/10.1038/s41467-020-17971-2 |
work_keys_str_mv | AT harmonstephaniea artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT sanfordthomash artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT xusheng artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT turkbeyevrimb artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT rothholger artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT xuziyue artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT yangdong artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT myronenkoandriy artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT andersonvictoria artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT amalouamel artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT blainmaxime artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT kassinmichael artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT longdilara artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT varblenicole artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT walkerstephaniem artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT bagciulas artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT ierardiannamaria artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT stellatoelvira artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT plensichguidogiovanni artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT franceschelligiuseppe artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT girlandocristiano artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT irmicigiovanni artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT labelladominic artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT hammouddima artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT malayeriashkan artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT joneselizabeth artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT summersronaldm artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT choykepeterl artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT xudaguang artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT floresmona artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT tamurakaku artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT obinatahirofumi artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT morihitoshi artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT patellafrancesca artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT cariatimaurizio artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT carrafiellogianpaolo artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT anpeng artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT woodbradfordj artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets AT turkbeybaris artificialintelligenceforthedetectionofcovid19pneumoniaonchestctusingmultinationaldatasets |