Cargando…
Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells
BACKGROUND: Sulfated polysaccharides from marine algae are known to possess antioxidative activities, however, their therapeutic role in metal-induced neurodegeneration has not been explored. In this study, the neuroprotective potentials of sulfated polysaccharides isolated from Ecklonia maxima (PKP...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429825/ https://www.ncbi.nlm.nih.gov/pubmed/32799855 http://dx.doi.org/10.1186/s12906-020-03047-7 |
_version_ | 1783571325259874304 |
---|---|
author | Olasehinde, Tosin A. Olaniran, Ademola O. Okoh, Anthony I. |
author_facet | Olasehinde, Tosin A. Olaniran, Ademola O. Okoh, Anthony I. |
author_sort | Olasehinde, Tosin A. |
collection | PubMed |
description | BACKGROUND: Sulfated polysaccharides from marine algae are known to possess antioxidative activities, however, their therapeutic role in metal-induced neurodegeneration has not been explored. In this study, the neuroprotective potentials of sulfated polysaccharides isolated from Ecklonia maxima (PKPM), Gelidium pristoides (PMNP), Ulva lactuca (PULV), Ulva rigida (PURL) and Gracilaria gracilis (PGCL) against Zn-induced neurodegeneration in rats’ hippocampal neuronal cells (HT-22) were assessed. METHODS: Cells were cultured and maintained at 37 °C. Control cells did not contain Zinc sulphate (ZnSO(4)) while other experimental groups contain Zn (50 μM) alone or in combination with sulfated polysaccharides (0.4 or 0.8 mg/mL). Cell viability was assessed using MTT assay while apoptotic assay was also determined using acridine orange and ethidium bromide staining technique. Oxidative stress parameters (superoxide dismutase and catalase activities, glutathione and nitric oxide levels) and acetylcholinesterase activity were also assessed in neuronal cells treated with or without Zn. RESULTS: Zn significantly reduced cell viability to about 50%. However, sulfated polysaccharides improved cell viability to about 95%. The sulfated polysaccharides also prevented late apoptosis and necrosis triggered by Zn. Furthermore, superoxide dismutase and catalase activities including glutathione content were significantly low in cells induced with Zn. Treatment with sulfated polysaccharides triggered a significant increase in antioxidant enzymes and glutathione content as well as a decrease in the activity of acetylcholinesterase in cells treated with Zn. CONCLUSION: PKPM, PGCL, PURL, PULV and PMNP exhibit neuroprotective effects against neuronal damage induced by Zn and this may be attributed to inhibition of apoptosis, oxidative damage and acetylcholinesterase activity. These polysaccharides may be good therapeutic agents to protect neuronal cells against Zn - induced pathological processes associated with Alzheimer’s disease. |
format | Online Article Text |
id | pubmed-7429825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-74298252020-08-18 Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells Olasehinde, Tosin A. Olaniran, Ademola O. Okoh, Anthony I. BMC Complement Med Ther Research Article BACKGROUND: Sulfated polysaccharides from marine algae are known to possess antioxidative activities, however, their therapeutic role in metal-induced neurodegeneration has not been explored. In this study, the neuroprotective potentials of sulfated polysaccharides isolated from Ecklonia maxima (PKPM), Gelidium pristoides (PMNP), Ulva lactuca (PULV), Ulva rigida (PURL) and Gracilaria gracilis (PGCL) against Zn-induced neurodegeneration in rats’ hippocampal neuronal cells (HT-22) were assessed. METHODS: Cells were cultured and maintained at 37 °C. Control cells did not contain Zinc sulphate (ZnSO(4)) while other experimental groups contain Zn (50 μM) alone or in combination with sulfated polysaccharides (0.4 or 0.8 mg/mL). Cell viability was assessed using MTT assay while apoptotic assay was also determined using acridine orange and ethidium bromide staining technique. Oxidative stress parameters (superoxide dismutase and catalase activities, glutathione and nitric oxide levels) and acetylcholinesterase activity were also assessed in neuronal cells treated with or without Zn. RESULTS: Zn significantly reduced cell viability to about 50%. However, sulfated polysaccharides improved cell viability to about 95%. The sulfated polysaccharides also prevented late apoptosis and necrosis triggered by Zn. Furthermore, superoxide dismutase and catalase activities including glutathione content were significantly low in cells induced with Zn. Treatment with sulfated polysaccharides triggered a significant increase in antioxidant enzymes and glutathione content as well as a decrease in the activity of acetylcholinesterase in cells treated with Zn. CONCLUSION: PKPM, PGCL, PURL, PULV and PMNP exhibit neuroprotective effects against neuronal damage induced by Zn and this may be attributed to inhibition of apoptosis, oxidative damage and acetylcholinesterase activity. These polysaccharides may be good therapeutic agents to protect neuronal cells against Zn - induced pathological processes associated with Alzheimer’s disease. BioMed Central 2020-08-14 /pmc/articles/PMC7429825/ /pubmed/32799855 http://dx.doi.org/10.1186/s12906-020-03047-7 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Olasehinde, Tosin A. Olaniran, Ademola O. Okoh, Anthony I. Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title | Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title_full | Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title_fullStr | Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title_full_unstemmed | Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title_short | Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn – induced neuronal damage in HT-22 cells |
title_sort | sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of zn – induced neuronal damage in ht-22 cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429825/ https://www.ncbi.nlm.nih.gov/pubmed/32799855 http://dx.doi.org/10.1186/s12906-020-03047-7 |
work_keys_str_mv | AT olasehindetosina sulfatedpolysaccharidesofsomeseaweedsexhibitneuroprotectionviamitigationofoxidativestresscholinergicdysfunctionandinhibitionofzninducedneuronaldamageinht22cells AT olaniranademolao sulfatedpolysaccharidesofsomeseaweedsexhibitneuroprotectionviamitigationofoxidativestresscholinergicdysfunctionandinhibitionofzninducedneuronaldamageinht22cells AT okohanthonyi sulfatedpolysaccharidesofsomeseaweedsexhibitneuroprotectionviamitigationofoxidativestresscholinergicdysfunctionandinhibitionofzninducedneuronaldamageinht22cells |