Cargando…
Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k–ε turbulence and Eulerian model data set
Computing gas and liquid interactions based on interfacial force models require a proper turbulence model that accurately resolve the turbulent scales such as turbulence kinetic energy and turbulence dissipation rate with cheap computational resources. The k − ε turbulence model can be a good turbu...
Autores principales: | Babanezhad, Meisam, Pishnamazi, Mahboubeh, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429829/ https://www.ncbi.nlm.nih.gov/pubmed/32796869 http://dx.doi.org/10.1038/s41598-020-70672-0 |
Ejemplares similares
-
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
gbell Learning function along with Fuzzy Mechanism
in Prediction of Two-Phase Flow
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Prediction of Nanofluid Characteristics and Flow Pattern
on Artificial Differential Evolution Learning Nodes and Fuzzy Framework
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Multidimensional machine learning algorithms to learn liquid velocity inside a cylindrical bubble column reactor
por: Babanezhad, Meisam, et al.
Publicado: (2020)