Cargando…

A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy

Patients with scar-associated fibrotic tissue remodelling are at greater risk of ventricular arrhythmic events, but current methods to detect the presence of such remodelling require invasive procedures. We present here a potential method to detect the presence, location and dimensions of scar using...

Descripción completa

Detalles Bibliográficos
Autores principales: Gemmell, Philip M., Gillette, Karli, Balaban, Gabriel, Rajani, Ronak, Vigmond, Edward J., Plank, Gernot, Bishop, Martin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429989/
https://www.ncbi.nlm.nih.gov/pubmed/32741753
http://dx.doi.org/10.1016/j.compbiomed.2020.103895
_version_ 1783571355436843008
author Gemmell, Philip M.
Gillette, Karli
Balaban, Gabriel
Rajani, Ronak
Vigmond, Edward J.
Plank, Gernot
Bishop, Martin J.
author_facet Gemmell, Philip M.
Gillette, Karli
Balaban, Gabriel
Rajani, Ronak
Vigmond, Edward J.
Plank, Gernot
Bishop, Martin J.
author_sort Gemmell, Philip M.
collection PubMed
description Patients with scar-associated fibrotic tissue remodelling are at greater risk of ventricular arrhythmic events, but current methods to detect the presence of such remodelling require invasive procedures. We present here a potential method to detect the presence, location and dimensions of scar using pacing-dependent changes in the vectorcardiogram (VCG). Using a clinically-derived whole-torso computational model, simulations were conducted at both slow and rapid pacing for a variety of scar patterns within the myocardium, with various VCG-derived metrics being calculated, with changes in these metrics being assessed for their ability to discern the presence and size of scar. Our results indicate that differences in the dipole angle at the end of the QRS complex and differences in the QRS area and duration may be used to predict scar properties. Using machine learning techniques, we were also able to predict the location of the scar to high accuracy, using only these VCG-derived rate-dependent changes as input. Such a non-invasive predictive tool for the presence of scar represents a potentially useful clinical tool for identifying patients at arrhythmic risk.
format Online
Article
Text
id pubmed-7429989
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-74299892020-08-19 A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy Gemmell, Philip M. Gillette, Karli Balaban, Gabriel Rajani, Ronak Vigmond, Edward J. Plank, Gernot Bishop, Martin J. Comput Biol Med Article Patients with scar-associated fibrotic tissue remodelling are at greater risk of ventricular arrhythmic events, but current methods to detect the presence of such remodelling require invasive procedures. We present here a potential method to detect the presence, location and dimensions of scar using pacing-dependent changes in the vectorcardiogram (VCG). Using a clinically-derived whole-torso computational model, simulations were conducted at both slow and rapid pacing for a variety of scar patterns within the myocardium, with various VCG-derived metrics being calculated, with changes in these metrics being assessed for their ability to discern the presence and size of scar. Our results indicate that differences in the dipole angle at the end of the QRS complex and differences in the QRS area and duration may be used to predict scar properties. Using machine learning techniques, we were also able to predict the location of the scar to high accuracy, using only these VCG-derived rate-dependent changes as input. Such a non-invasive predictive tool for the presence of scar represents a potentially useful clinical tool for identifying patients at arrhythmic risk. Elsevier 2020-08 /pmc/articles/PMC7429989/ /pubmed/32741753 http://dx.doi.org/10.1016/j.compbiomed.2020.103895 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gemmell, Philip M.
Gillette, Karli
Balaban, Gabriel
Rajani, Ronak
Vigmond, Edward J.
Plank, Gernot
Bishop, Martin J.
A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title_full A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title_fullStr A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title_full_unstemmed A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title_short A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
title_sort computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429989/
https://www.ncbi.nlm.nih.gov/pubmed/32741753
http://dx.doi.org/10.1016/j.compbiomed.2020.103895
work_keys_str_mv AT gemmellphilipm acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT gillettekarli acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT balabangabriel acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT rajanironak acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT vigmondedwardj acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT plankgernot acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT bishopmartinj acomputationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT gemmellphilipm computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT gillettekarli computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT balabangabriel computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT rajanironak computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT vigmondedwardj computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT plankgernot computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy
AT bishopmartinj computationalinvestigationintoratedependantvectorcardiogramchangesduetospecificfibrosispatternsinnonischæmicdilatedcardiomyopathy