Cargando…
Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure
Phthalate plasticizers are ubiquitous chemicals linked to several cardiovascular diseases in animal models and humans. Despite this, the mechanisms by which phthalate exposures cause adverse cardiac health outcomes are unclear. In particular, whether phthalate exposures during pregnancy interfere wi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430087/ https://www.ncbi.nlm.nih.gov/pubmed/32864567 http://dx.doi.org/10.1177/2516865720939971 |
_version_ | 1783571369847422976 |
---|---|
author | Svoboda, Laurie K Wang, Kai Cavalcante, Raymond G Neier, Kari Colacino, Justin A Sartor, Maureen A Dolinoy, Dana C |
author_facet | Svoboda, Laurie K Wang, Kai Cavalcante, Raymond G Neier, Kari Colacino, Justin A Sartor, Maureen A Dolinoy, Dana C |
author_sort | Svoboda, Laurie K |
collection | PubMed |
description | Phthalate plasticizers are ubiquitous chemicals linked to several cardiovascular diseases in animal models and humans. Despite this, the mechanisms by which phthalate exposures cause adverse cardiac health outcomes are unclear. In particular, whether phthalate exposures during pregnancy interfere with normal developmental programming of the cardiovascular system, and the resulting implications this may have for long-term disease risk, are unknown. Recent studies suggest that the effects of phthalates on metabolic and neurobehavioral outcomes are sex-specific. However, the influence of sex on cardiac susceptibility to phthalate exposures has not been investigated. One mechanism by which developmental exposures may influence long-term health is through altered programming of DNA methylation. In this work, we utilized an established mouse model of human-relevant perinatal exposure and enhanced reduced representation bisulfite sequencing to investigate the long-term effects of diethylhexyl phthalate (DEHP) exposure on DNA methylation in the hearts of adult male and female offspring at 5 months of age (n = 5-7 mice per sex and exposure). Perinatal DEHP exposure led to hundreds of sex-specific, differentially methylated cytosines (DMCs) and differentially methylated regions (DMRs) in the heart. Pathway analysis of DMCs revealed enrichment for several pathways in females, including insulin signaling, regulation of histone methylation, and tyrosine phosphatase activity. In males, DMCs were enriched for glucose transport, energy generation, and developmental programs. Notably, many sex-specific genes differentially methylated with DEHP exposure in our mouse model were also differentially methylated in published data of heart tissues collected from human heart failure patients. Together, these data highlight the potential role for DNA methylation in DEHP-induced cardiac effects and emphasize the importance of sex as a biological variable in environmental health studies. |
format | Online Article Text |
id | pubmed-7430087 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-74300872020-08-27 Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure Svoboda, Laurie K Wang, Kai Cavalcante, Raymond G Neier, Kari Colacino, Justin A Sartor, Maureen A Dolinoy, Dana C Epigenet Insights Environmental and Nutritional Epigenetics Phthalate plasticizers are ubiquitous chemicals linked to several cardiovascular diseases in animal models and humans. Despite this, the mechanisms by which phthalate exposures cause adverse cardiac health outcomes are unclear. In particular, whether phthalate exposures during pregnancy interfere with normal developmental programming of the cardiovascular system, and the resulting implications this may have for long-term disease risk, are unknown. Recent studies suggest that the effects of phthalates on metabolic and neurobehavioral outcomes are sex-specific. However, the influence of sex on cardiac susceptibility to phthalate exposures has not been investigated. One mechanism by which developmental exposures may influence long-term health is through altered programming of DNA methylation. In this work, we utilized an established mouse model of human-relevant perinatal exposure and enhanced reduced representation bisulfite sequencing to investigate the long-term effects of diethylhexyl phthalate (DEHP) exposure on DNA methylation in the hearts of adult male and female offspring at 5 months of age (n = 5-7 mice per sex and exposure). Perinatal DEHP exposure led to hundreds of sex-specific, differentially methylated cytosines (DMCs) and differentially methylated regions (DMRs) in the heart. Pathway analysis of DMCs revealed enrichment for several pathways in females, including insulin signaling, regulation of histone methylation, and tyrosine phosphatase activity. In males, DMCs were enriched for glucose transport, energy generation, and developmental programs. Notably, many sex-specific genes differentially methylated with DEHP exposure in our mouse model were also differentially methylated in published data of heart tissues collected from human heart failure patients. Together, these data highlight the potential role for DNA methylation in DEHP-induced cardiac effects and emphasize the importance of sex as a biological variable in environmental health studies. SAGE Publications 2020-08-05 /pmc/articles/PMC7430087/ /pubmed/32864567 http://dx.doi.org/10.1177/2516865720939971 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Environmental and Nutritional Epigenetics Svoboda, Laurie K Wang, Kai Cavalcante, Raymond G Neier, Kari Colacino, Justin A Sartor, Maureen A Dolinoy, Dana C Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title | Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title_full | Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title_fullStr | Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title_full_unstemmed | Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title_short | Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure |
title_sort | sex-specific programming of cardiac dna methylation by developmental phthalate exposure |
topic | Environmental and Nutritional Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430087/ https://www.ncbi.nlm.nih.gov/pubmed/32864567 http://dx.doi.org/10.1177/2516865720939971 |
work_keys_str_mv | AT svobodalauriek sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT wangkai sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT cavalcanteraymondg sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT neierkari sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT colacinojustina sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT sartormaureena sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure AT dolinoydanac sexspecificprogrammingofcardiacdnamethylationbydevelopmentalphthalateexposure |