Cargando…
Macular hole morphology and measurement using an automated three-dimensional image segmentation algorithm
OBJECTIVE: Full-thickness macular holes (MH) are classified principally by size, which is one of the strongest predictors of anatomical and visual success. Using a three-dimensional (3D) automated image processing algorithm, we analysed optical coherence tomography (OCT) images of 104 MH of patients...
Autores principales: | Chen, Yunzi, Nasrulloh, Amar V, Wilson, Ian, Geenen, Caspar, Habib, Maged, Obara, Boguslaw, Steel, David H W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430427/ https://www.ncbi.nlm.nih.gov/pubmed/32844119 http://dx.doi.org/10.1136/bmjophth-2019-000404 |
Ejemplares similares
-
Predicting Postoperative Vision for Macular Hole with Automated Image Analysis
por: Murphy, Declan C., et al.
Publicado: (2020) -
Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis
por: Grinton, Michael E., et al.
Publicado: (2015) -
Optimal management of idiopathic macular holes
por: Madi, Haifa A, et al.
Publicado: (2016) -
A randomised controlled trial evaluating internal limiting membrane peeling forceps in macular hole surgery
por: Ferrara, Mariantonia, et al.
Publicado: (2022) -
Biomedical Data Annotation: An OCT Imaging Case Study
por: Anderson, Matthew, et al.
Publicado: (2023)