Cargando…
Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.
Hydroxychloroquine (HCQ) has been proposed in the treatment of SARS-coronavirus 2 (SARS-CoV-2) infection, albeit with much controversy. In vitro, HCQ effectively inhibits viral entry, but its use in the clinic has been hampered by conflicting results. A better understanding of HCQ’s mechanism of act...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430563/ https://www.ncbi.nlm.nih.gov/pubmed/32817933 http://dx.doi.org/10.1101/2020.08.13.250217 |
Sumario: | Hydroxychloroquine (HCQ) has been proposed in the treatment of SARS-coronavirus 2 (SARS-CoV-2) infection, albeit with much controversy. In vitro, HCQ effectively inhibits viral entry, but its use in the clinic has been hampered by conflicting results. A better understanding of HCQ’s mechanism of actions in vitro is needed to resolve these conflicts. Recently, anesthetics were shown to disrupt ordered monosialotetrahexosylganglioside1 (GM1) lipid rafts. These same lipid rafts recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to an endocytic entry point, away from phosphatidylinositol 4,5 bisphosphate (PIP(2)) domains. Here we employed super resolution imaging of cultured mammalian cells to show HCQ directly perturbs GM1 lipid rafts and inhibits the ability of ACE2 receptor to associate with the endocytic pathway. HCQ also disrupts PIP(2) domains and their ability to cluster and sequester ACE2. Similarly, the antibiotic erythromycin inhibits viral entry and both HCQ and erythromycin decrease the antimicrobial host defense peptide amyloid beta in cultured cells. We conclude HCQ is an anesthetic-like compound that disrupts GM1 lipid rafts similar to anesthetics. The disruption likely decreases viral clustering at both endocytic and putative PIP(2) entry points. |
---|