Cargando…
Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19
Machine learning (ML) models require large datasets which may be siloed across different healthcare institutions. Using federated learning, a ML technique that avoids locally aggregating raw clinical data across multiple institutions, we predict mortality within seven days in hospitalized COVID-19 p...
Autores principales: | Vaid, Akhil, Jaladanki, Suraj K, Xu, Jie, Teng, Shelly, Kumar, Arvind, Lee, Samuel, Somani, Sulaiman, Paranjpe, Ishan, De Freitas, Jessica K, Wanyan, Tingyi, Johnson, Kipp W, Bicak, Mesude, Klang, Eyal, Kwon, Young Joon, Costa, Anthony, Zhao, Shan, Miotto, Riccardo, Charney, Alexander W, Böttinger, Erwin, Fayad, Zahi A, Nadkarni, Girish N, Wang, Fei, Glicksberg, Benjamin S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430624/ https://www.ncbi.nlm.nih.gov/pubmed/32817979 http://dx.doi.org/10.1101/2020.08.11.20172809 |
Ejemplares similares
-
Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
por: Vaid, Akhil, et al.
Publicado: (2021) -
Acute Kidney Injury in Patients Hospitalized With COVID-19 in New York City: Temporal Trends From March 2020 to April 2021
por: Dellepiane, Sergio, et al.
Publicado: (2021) -
Contrastive learning improves critical event prediction in COVID-19 patients
por: Wanyan, Tingyi, et al.
Publicado: (2021) -
Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: A retrospective cohort study
por: Paranjpe, Ishan, et al.
Publicado: (2021) -
Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments
por: Brin, Dana, et al.
Publicado: (2023)