Cargando…
A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes
Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431084/ https://www.ncbi.nlm.nih.gov/pubmed/32709743 http://dx.doi.org/10.1073/pnas.1919748117 |
_version_ | 1783571526387236864 |
---|---|
author | Thompson, Ammon May, Michael R. Moore, Brian R. Kopp, Artyom |
author_facet | Thompson, Ammon May, Michael R. Moore, Brian R. Kopp, Artyom |
author_sort | Thompson, Ammon |
collection | PubMed |
description | Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the origin of novel phenotypes, and expression states are readily comparable between tissues and species. However, inferring the expression state of genes is a surprisingly difficult problem, owing to the complex biological and technical processes that give rise to observed transcriptomic datasets. Here, we develop a hierarchical Bayesian mixture model that describes this complex process and allows us to infer expression state of genes from replicate transcriptomic libraries. We explore the statistical behavior of this method with analyses of simulated datasets—where we demonstrate its ability to correctly infer true (known) expression states—and empirical-benchmark datasets, where we demonstrate that the expression states inferred from RNA-sequencing (RNA-seq) datasets using our method are consistent with those based on independent evidence. The power of our method to correctly infer expression states is generally high and remarkably, approaches the maximum possible power for this inference problem. We present an empirical analysis of primate-brain transcriptomes, which identifies genes that have a unique expression state in humans. Our method is implemented in the freely available R package zigzag. |
format | Online Article Text |
id | pubmed-7431084 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-74310842020-08-27 A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes Thompson, Ammon May, Michael R. Moore, Brian R. Kopp, Artyom Proc Natl Acad Sci U S A Biological Sciences Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the origin of novel phenotypes, and expression states are readily comparable between tissues and species. However, inferring the expression state of genes is a surprisingly difficult problem, owing to the complex biological and technical processes that give rise to observed transcriptomic datasets. Here, we develop a hierarchical Bayesian mixture model that describes this complex process and allows us to infer expression state of genes from replicate transcriptomic libraries. We explore the statistical behavior of this method with analyses of simulated datasets—where we demonstrate its ability to correctly infer true (known) expression states—and empirical-benchmark datasets, where we demonstrate that the expression states inferred from RNA-sequencing (RNA-seq) datasets using our method are consistent with those based on independent evidence. The power of our method to correctly infer expression states is generally high and remarkably, approaches the maximum possible power for this inference problem. We present an empirical analysis of primate-brain transcriptomes, which identifies genes that have a unique expression state in humans. Our method is implemented in the freely available R package zigzag. National Academy of Sciences 2020-08-11 2020-07-24 /pmc/articles/PMC7431084/ /pubmed/32709743 http://dx.doi.org/10.1073/pnas.1919748117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Thompson, Ammon May, Michael R. Moore, Brian R. Kopp, Artyom A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title | A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title_full | A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title_fullStr | A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title_full_unstemmed | A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title_short | A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes |
title_sort | hierarchical bayesian mixture model for inferring the expression state of genes in transcriptomes |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431084/ https://www.ncbi.nlm.nih.gov/pubmed/32709743 http://dx.doi.org/10.1073/pnas.1919748117 |
work_keys_str_mv | AT thompsonammon ahierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT maymichaelr ahierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT moorebrianr ahierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT koppartyom ahierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT thompsonammon hierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT maymichaelr hierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT moorebrianr hierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes AT koppartyom hierarchicalbayesianmixturemodelforinferringtheexpressionstateofgenesintranscriptomes |