Cargando…
A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes
Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the...
Autores principales: | Thompson, Ammon, May, Michael R., Moore, Brian R., Kopp, Artyom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431084/ https://www.ncbi.nlm.nih.gov/pubmed/32709743 http://dx.doi.org/10.1073/pnas.1919748117 |
Ejemplares similares
-
Bayesian inference in ring attractor networks
por: Kutschireiter, Anna, et al.
Publicado: (2023) -
Generalizing Bayesian phylogenetics to infer shared evolutionary events
por: Oaks, Jamie R., et al.
Publicado: (2022) -
Model misspecification misleads inference of the spatial dynamics of disease outbreaks
por: Gao, Jiansi, et al.
Publicado: (2023) -
Efficient Bayesian inference under the multispecies coalescent with migration
por: Flouri, Tomáš, et al.
Publicado: (2023) -
A full Bayesian hierarchical mixture model for the variance of gene differential expression
por: Manda, Samuel OM, et al.
Publicado: (2007)