Cargando…
FeAture Explorer (FAE): A tool for developing and comparing radiomics models
In radiomics studies, researchers usually need to develop a supervised machine learning model to map image features onto the clinical conclusion. A classical machine learning pipeline consists of several steps, including normalization, feature selection, and classification. It is often tedious to fi...
Autores principales: | Song, Yang, Zhang, Jing, Zhang, Yu-dong, Hou, Ying, Yan, Xu, Wang, Yida, Zhou, Minxiong, Yao, Ye-feng, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431107/ https://www.ncbi.nlm.nih.gov/pubmed/32804986 http://dx.doi.org/10.1371/journal.pone.0237587 |
Ejemplares similares
-
Temperature dependence in Bragg edge neutron transmission measurements
por: Al-Falahat, Ala’a M., et al.
Publicado: (2022) -
FaesAP3_1 Regulates the FaesELF3 Gene Involved in Filament-Length Determination of Long-Homostyle Fagopyrum esculentum
por: Ma, Zhiyuan, et al.
Publicado: (2022) -
The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M(pro))
por: Ebrahim, Ali, et al.
Publicado: (2022) -
Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L.
por: Yan, Guixin, et al.
Publicado: (2015) -
Sex-Specific Whole-Transcriptome Analysis in the Cerebral Cortex of FAE Offspring
por: Mishra, Nitish K., et al.
Publicado: (2023)