Cargando…

Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhe, Kennedy, Peter GE, Dupree, Cecily, Wang, Min, Lee, Catherin, Pointon, Tiffany, Langford, T. Dianne, Graner, Michael W, Yu, Xiaoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431217/
https://www.ncbi.nlm.nih.gov/pubmed/32808238
http://dx.doi.org/10.1007/s11481-020-09948-1
_version_ 1783571549822910464
author Wang, Zhe
Kennedy, Peter GE
Dupree, Cecily
Wang, Min
Lee, Catherin
Pointon, Tiffany
Langford, T. Dianne
Graner, Michael W
Yu, Xiaoli
author_facet Wang, Zhe
Kennedy, Peter GE
Dupree, Cecily
Wang, Min
Lee, Catherin
Pointon, Tiffany
Langford, T. Dianne
Graner, Michael W
Yu, Xiaoli
author_sort Wang, Zhe
collection PubMed
description Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown. The risk of MS is increased after infectious mononucleosis (IM) due to EBV infection, and MS patients have higher serum titers of anti-EBV antibodies than control populations. Our goal was to identify disease-relevant epitopes of IgG antibodies in MS; to do so, we screened phage-displayed random peptide libraries (12-mer) with total IgG antibodies purified from the brain of a patient with acute MS. We identified and characterized the phage peptides for binding specificity to intrathecal IgG from patients with MS and from controls by ELISA, phage-mediated Immuno-PCR, and isoelectric focusing. We identified two phage peptides that share sequence homologies with EBV nuclear antigens 1 and 2 (EBNA1 and EBNA2), respectively. The specificity of the EBV epitopes found by panning with MS brain IgG was confirmed by ELISA and competitive inhibition assays. Using a highly sensitive phage-mediated immuno-PCR assay, we determined specific bindings of the two EBV epitopes to IgG from CSF from 46 MS and 5 inflammatory control (IC) patients. MS CSF IgG have significantly higher bindings to EBNA1 epitope than to EBNA2 epitope, whereas EBNA1 and EBNA2 did not significantly differ in binding to IC CSF IgG. Further, the EBNA1 epitope was recognized by OCBs from multiple MS CSF as shown in blotting assays with samples separated by isoelectric focusing. The EBNA1 epitope is reactive to MS intrathecal antibodies corresponding to oligoclonal bands. This reinforces the potential role of EBV in the etiology of MS. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11481-020-09948-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7431217
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-74312172020-08-18 Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands Wang, Zhe Kennedy, Peter GE Dupree, Cecily Wang, Min Lee, Catherin Pointon, Tiffany Langford, T. Dianne Graner, Michael W Yu, Xiaoli J Neuroimmune Pharmacol Original Article Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown. The risk of MS is increased after infectious mononucleosis (IM) due to EBV infection, and MS patients have higher serum titers of anti-EBV antibodies than control populations. Our goal was to identify disease-relevant epitopes of IgG antibodies in MS; to do so, we screened phage-displayed random peptide libraries (12-mer) with total IgG antibodies purified from the brain of a patient with acute MS. We identified and characterized the phage peptides for binding specificity to intrathecal IgG from patients with MS and from controls by ELISA, phage-mediated Immuno-PCR, and isoelectric focusing. We identified two phage peptides that share sequence homologies with EBV nuclear antigens 1 and 2 (EBNA1 and EBNA2), respectively. The specificity of the EBV epitopes found by panning with MS brain IgG was confirmed by ELISA and competitive inhibition assays. Using a highly sensitive phage-mediated immuno-PCR assay, we determined specific bindings of the two EBV epitopes to IgG from CSF from 46 MS and 5 inflammatory control (IC) patients. MS CSF IgG have significantly higher bindings to EBNA1 epitope than to EBNA2 epitope, whereas EBNA1 and EBNA2 did not significantly differ in binding to IC CSF IgG. Further, the EBNA1 epitope was recognized by OCBs from multiple MS CSF as shown in blotting assays with samples separated by isoelectric focusing. The EBNA1 epitope is reactive to MS intrathecal antibodies corresponding to oligoclonal bands. This reinforces the potential role of EBV in the etiology of MS. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11481-020-09948-1) contains supplementary material, which is available to authorized users. Springer US 2020-08-18 2021 /pmc/articles/PMC7431217/ /pubmed/32808238 http://dx.doi.org/10.1007/s11481-020-09948-1 Text en © Springer Science+Business Media, LLC, part of Springer Nature 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Article
Wang, Zhe
Kennedy, Peter GE
Dupree, Cecily
Wang, Min
Lee, Catherin
Pointon, Tiffany
Langford, T. Dianne
Graner, Michael W
Yu, Xiaoli
Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title_full Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title_fullStr Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title_full_unstemmed Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title_short Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands
title_sort antibodies from multiple sclerosis brain identified epstein-barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431217/
https://www.ncbi.nlm.nih.gov/pubmed/32808238
http://dx.doi.org/10.1007/s11481-020-09948-1
work_keys_str_mv AT wangzhe antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT kennedypeterge antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT dupreececily antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT wangmin antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT leecatherin antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT pointontiffany antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT langfordtdianne antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT granermichaelw antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands
AT yuxiaoli antibodiesfrommultiplesclerosisbrainidentifiedepsteinbarrvirusnuclearantigen12epitopeswhicharerecognizedbyoligoclonalbands