Cargando…

Measuring the Hubble constant with a sample of kilonovae

Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H(0)). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Coughlin, Michael W., Antier, Sarah, Dietrich, Tim, Foley, Ryan J., Heinzel, Jack, Bulla, Mattia, Christensen, Nelson, Coulter, David A., Issa, Lina, Khetan, Nandita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431580/
https://www.ncbi.nlm.nih.gov/pubmed/32807780
http://dx.doi.org/10.1038/s41467-020-17998-5
Descripción
Sumario:Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H(0)). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H(0) contraints. Here, we show measurement of H(0) using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find [Formula: see text] and [Formula: see text] for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs.