Cargando…
Single Parameter Estimation Approach for Robust Estimation of SIR Model With Limited and Noisy Data: The Case for COVID-19
OBJECTIVE: The susceptible-infected-removed (SIR) model and its variants are widely used to predict the progress of coronavirus disease 2019 (COVID-19) worldwide, despite their rather simplistic nature. Nevertheless, robust estimation of the SIR model presents a significant challenge, particularly w...
Autores principales: | Senel, Kerem, Ozdinc, Mesut, Ozturkcan, Selcen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431866/ https://www.ncbi.nlm.nih.gov/pubmed/32580814 http://dx.doi.org/10.1017/dmp.2020.220 |
Ejemplares similares
-
Smoothing of, and Parameter Estimation from, Noisy Biophysical
Recordings
por: Huys, Quentin J. M., et al.
Publicado: (2009) -
Robust Learning with Noisy Ship Trajectories by Adaptive Noise Rate Estimation
por: Yang, Haoyu, et al.
Publicado: (2023) -
Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
por: Cao, Zhixing, et al.
Publicado: (2019) -
Estimation of SIR model’s parameters of COVID-19 in Algeria
por: Lounis, Mohamed, et al.
Publicado: (2020) -
Analytical solutions and parameter estimation of the SIR epidemic model
por: Prodanov, Dimiter
Publicado: (2022)