Cargando…
Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial–mesenchymal transition
Significance: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow...
Autores principales: | Strbkova, Lenka, Carson, Brittany B., Vincent, Theresa, Vesely, Pavel, Chmelik, Radim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431880/ https://www.ncbi.nlm.nih.gov/pubmed/32812412 http://dx.doi.org/10.1117/1.JBO.25.8.086502 |
Ejemplares similares
-
Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples
por: Bouchal, Petr, et al.
Publicado: (2019) -
Quantitative dispersion microscopy
por: Fu, Dan, et al.
Publicado: (2010) -
Characterization and identification of cell death dynamics by quantitative phase imaging
por: Hsieh, Huai-Ching, et al.
Publicado: (2022) -
Functional imaging with dynamic quantitative oblique back-illumination microscopy
por: Casteleiro Costa, Paloma, et al.
Publicado: (2022) -
Chromatic confocal microscopy for multi-depth imaging of epithelial tissue
por: Olsovsky, Cory, et al.
Publicado: (2013)