Cargando…

Investigating the Vascular Toxicity Outcomes of the Irreversible Proteasome Inhibitor Carfilzomib

Background: Carfilzomib’s (Cfz) adverse events in myeloma patients include cardiovascular toxicity. Since carfilzomib’s vascular effects are elusive, we investigated the vascular outcomes of carfilzomib and metformin (Met) coadministration. Methods: Mice received: (i) saline; (ii) Cfz; (iii) Met; (i...

Descripción completa

Detalles Bibliográficos
Autores principales: Efentakis, Panagiotis, Doerschmann, Hendrik, Witzler, Claudius, Siemer, Svenja, Nikolaou, Panagiota-Efstathia, Kastritis, Efstathios, Stauber, Roland, Dimopoulos, Meletios Athanasios, Wenzel, Philip, Andreadou, Ioanna, Terpos, Evangelos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432349/
https://www.ncbi.nlm.nih.gov/pubmed/32707866
http://dx.doi.org/10.3390/ijms21155185
Descripción
Sumario:Background: Carfilzomib’s (Cfz) adverse events in myeloma patients include cardiovascular toxicity. Since carfilzomib’s vascular effects are elusive, we investigated the vascular outcomes of carfilzomib and metformin (Met) coadministration. Methods: Mice received: (i) saline; (ii) Cfz; (iii) Met; (iv) Cfz+Met for two consecutive (acute) or six alternate days (subacute protocol). Leucocyte-derived reactive oxygen species (ROS) and serum NO(x) levels were determined and aortas underwent vascular and molecular analyses. Mechanistic experiments were recapitulated in aged mice who received similar treatment to young animals. Primary murine (prmVSMCs) and aged human aortic smooth muscle cells (HAoSMCs) underwent Cfz, Met and Cfz+Met treatment and viability, metabolic flux and p53-LC3-B expression were measured. Experiments were recapitulated in AngII, CoCl(2) and high-glucose stimulated HAoSMCs. Results: Acutely, carfilzomib alone led to vascular hypo-contraction and increased ROS release. Subacutely, carfilzomib increased ROS release without vascular manifestations. Cfz+Met increased PGF2α-vasoconstriction and LC3-B-dependent autophagy in both young and aged mice. In vitro, Cfz+Met led to cytotoxicity and autophagy, while Met and Cfz+Met shifted cellular metabolism. Conclusion: Carfilzomib induces a transient vascular impairment and oxidative burst. Cfz+Met increased vascular contractility and synergistically induced autophagy in all settings. Therefore, carfilzomib cannot be accredited for a permanent vascular dysfunction, while Cfz+Met exert vasoprotective potency.